Repositorio Institucional de la Universidad Alfonso X el Sabio

3D-Printed Polycaprolactone Scaffolds Reinforced with Cellulose Nanocrystals and Silver Nanoparticles for Bone Tissue Engineering

Mostrar el registro sencillo del ítem

APA


ISO 690


https://hdl.handle.net/20.500.12080/51005
dc.contributor.author N'Gatta, Kanga Marius
dc.contributor.author Assanvo, Edja Florentin
dc.contributor.author El Hayek, Joelle
dc.contributor.author Masquelez, Nathalie
dc.contributor.author Kamgang Syapnjeu, Pelagie
dc.contributor.author Deabate, Stefano
dc.contributor.author Bonniol, Valérie
dc.contributor.author Soussan, Laurence
dc.contributor.author Zamora-Ledezma, Camilo
dc.contributor.author Elango, Jeevithan
dc.contributor.author Flaud, Valérie
dc.contributor.author Boa, David
dc.contributor.author Salameh, Chrystelle
dc.date.accessioned 2025-11-20T16:49:16Z
dc.date.available 2025-11-20T16:49:16Z
dc.date.created 2025
dc.date.issued 2025
dc.identifier.uri https://hdl.handle.net/20.500.12080/51005
dc.description.abstract Cellulose nanocrystals (CNC) have garnered significant attention in pharmaceutical and medical applications due to their biocompatibility, biodegradability, renewability, and strong surface reactivity. In this study, we designed 3D-printed bioactive composite scaffolds via fused deposition modeling (FDM), incorporating polycaprolactone (PCL), CNC derived from Ficus thonningii bark, and silver nanoparticles (AgNps) synthesized through in situ reduction of silver nitrate AgNO3. Energy-dispersive X-ray spectroscopy (EDX) confirmed AgNps incorporation, while scanning electron microscopy (SEM) revealed a highly porous, interconnected structure. The inclusion of CNC and AgNps enhanced PCL's biodegradability, hydrophilicity, and hydroxyapatite nucleation, all crucial for osteoconductivity. The scaffolds demonstrated mechanical properties suitable for bone regeneration, effective antibacterial activity against Escherichia coli, and cytocompatibility with Mesenchymal Stem Cells (MSCs). These findings highlight the potential of PCL/CNCx/AgNps scaffolds as advanced biomaterials for bone tissue engineering, since they offer enhanced resorbability, antibacterial protection, and structural adaptability. es_ES
dc.format application/pdf es_ES
dc.language eng es_ES
dc.publisher ACS es_ES
dc.rights Copyright es_ES
dc.rights.uri N/A es_ES
dc.source ACS Applied Materials & Interfaces Journal es_ES
dc.title 3D-Printed Polycaprolactone Scaffolds Reinforced with Cellulose Nanocrystals and Silver Nanoparticles for Bone Tissue Engineering es_ES
dc.type Artículo es_ES
dc.description.curso 2025 es_ES
dc.rights.accessrights info:eu-repo/semantics/closedAccess es_ES
dc.identifier.dl 2025
dc.identifier.location N/A es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta

Social Media