Repositorio Institucional de la Universidad Alfonso X el Sabio

Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm

Mostrar el registro sencillo del ítem

APA

Oller, Jorge & Gabandé Rodríguez, Enrique & Ruiz Rodríguez, María Jesús & Desdín Micó, Gabriela & Aranda, Juan Francisco & Rodrigues Diez, Raquel & Ballesteros Martínez, Constanza & Blanco, Eva María & Roldán Montero, Raquel & Acuña, Pedro & Forteza Gil, Alberto & Martín López, Carlos E. & Nistal, J. Francisco & Lino Cardenas, Christian L. & Lindsay, Mark Evan & Martín Ventura, José Luis & Briones, Ana M. & Redondo, Juan Miguel & Mittelbrunn, María (2021-05 ) .Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm.

ISO 690

Oller, Jorge & Gabandé Rodríguez, Enrique & Ruiz Rodríguez, María Jesús & Desdín Micó, Gabriela & Aranda, Juan Francisco & Rodrigues Diez, Raquel & Ballesteros Martínez, Constanza & Blanco, Eva María & Roldán Montero, Raquel & Acuña, Pedro & Forteza Gil, Alberto & Martín López, Carlos E. & Nistal, J. Francisco & Lino Cardenas, Christian L. & Lindsay, Mark Evan & Martín Ventura, José Luis & Briones, Ana M. & Redondo, Juan Miguel & Mittelbrunn, María. 2021-05 .Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm.

https://hdl.handle.net/20.500.12080/45179
dc.contributor.author Oller, Jorge
dc.contributor.author Gabandé Rodríguez, Enrique
dc.contributor.author Ruiz Rodríguez, María Jesús
dc.contributor.author Desdín Micó, Gabriela
dc.contributor.author Aranda, Juan Francisco
dc.contributor.author Rodrigues Diez, Raquel
dc.contributor.author Ballesteros Martínez, Constanza
dc.contributor.author Blanco, Eva María
dc.contributor.author Roldán Montero, Raquel
dc.contributor.author Acuña, Pedro
dc.contributor.author Forteza Gil, Alberto
dc.contributor.author Martín López, Carlos E.
dc.contributor.author Nistal, J. Francisco
dc.contributor.author Lino Cardenas, Christian L.
dc.contributor.author Lindsay, Mark Evan
dc.contributor.author Martín Ventura, José Luis
dc.contributor.author Briones, Ana M.
dc.contributor.author Redondo, Juan Miguel
dc.contributor.author Mittelbrunn, María
dc.date.accessioned 2025-01-22T11:13:56Z
dc.date.available 2025-01-22T11:13:56Z
dc.date.created 2021-05
dc.date.issued 2021-05
dc.identifier.uri https://hdl.handle.net/20.500.12080/45179
dc.description.abstract BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. METHODS: Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. RESULTS: The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice. CONCLUSIONS: Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders. es_ES
dc.format application/pdf es_ES
dc.language eng es_ES
dc.relation.ispartof Circulation es_ES
dc.rights CC-BY es_ES
dc.rights.uri http://creativecommons.org/licenses/by/4.0/deed.es es_ES
dc.source Circulation es_ES
dc.title Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm es_ES
dc.type info:eu-repo/semantics/article es_ES
dc.rights.accessrights info:eu-repo/semantics/openAccess es_ES
dc.identifier.location N/A es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC-BY Excepto si se señala otra cosa, la licencia del ítem se describe como CC-BY

Buscar en DSpace


Listar

Mi cuenta

Social Media