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ARTICLE INFO ABSTRACT

Keywords: This paper discusses statistical and dynamical methods used to produce local (grid-spacing < 4 km) and Euro-

Statistical downscaling pean (~10 km) climate scenarios that were used as input for multi-sectoral impact models in the DevelopIng

Dynamical downscaling STratEgies by integrating mitigatioN, aDaptation and participation to climate changE Risks (DISTENDER)

gigzzz g:’ziig:g project, and shares the main results with a special focus on temperature and precipitation. The statistical
downscaling consisted of three stages: (1) a parametric quantile mapping at a daily scale; (2) an analogous-
transference function of hourly curves for each day, and (3) a classical geostatistical downscaling. This three-
stage technique was applied to three representative Earth System Models according to three different climate-
change level (being EC-EARTH3-Veg the medium case) under four shared socioeconomic pathways (SSP1-2.6,
SSP2-4.5, SSP3-7.0, SSP5-8.5). In addition, dynamical downscaling was also considered. Particularly, the
ICOsahedral Nonhydrostatic model downscaled the EC-EARTH3-Veg model to computationally costly km-scale
resolution under all four pathways. Both downscaling approaches show consistent behaviour for the down-
scaled model under the different pathways. Results indicate historical biases in precipitation about + 10 % in
general, while temperature biases ranged from —2°C to + 1°C across different regions and seasons. Under SSP5-
8.5, summer precipitation in southern Europe is projected to decrease by up to 20 %, while northern Europe
experiences increases of + 10 % to + 15 %. Temperature increases under the same scenario reach + 5°C in
summer across southern Europe, with smaller increases of + 2°C to + 3°C in northern regions. These findings on
management for uncertainty levels demonstrate the utility of combined downscaling approaches for local climate
risk assessment and adaptation strategies.

European (~10 km) scales, ensuring more precise climate infor-
mation tailored to specific regions and decision-making needs.

Practical implications
One of the primary applications of DISTENDER’s climate pro-
jections is in climate risk assessment for urban areas, agricultural

The DISTENDER project provides high-resolution climate sce-
narios that can directly support policy makers, urban planners,
and climate adaptation practitioners in developing informed
strategies for mitigating climate risks (https://distender.eu/). By
integrating statistical and dynamical downscaling approaches,
DISTENDER offers climate projections at both local (<4 km) and

regions, and coastal communities. For instance, in Southern
Europe, where summer precipitation is projected to decrease by
up to 20 % under the SSP5-8.5 scenario, water management au-
thorities can use these projections to optimize reservoir opera-
tions, promote water-saving technologies, and implement drought
mitigation measures. Similarly, Northern Europe’s projected
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precipitation increases (+10 % to + 15 %) can help urban planners
reinforce drainage systems to prevent flooding and infrastructure
damage.

The integration of hourly-scale projections is particularly useful
for extreme event preparedness, such as to face heatwaves. For
example, under the same SSP5-8.5 scenario, temperature in-
creases of up to 5 °C in summer necessitate adaptive strategies,
such as modifying building designs to improve thermal insulation,
increasing green urban spaces, and implementing early warning
systems to protect vulnerable populations from extreme heat
events.

Sectoral applications of the downscaled climate data include
agriculture and water resource management. In areas where
drought risk is expected to intensify, such as Southern Spain and
Italy, farmers can transition to drought-resistant crops, adopt
precision irrigation techniques, and implement soil moisture
conservation practices. In contrast, increased rainfall in Central
and Northern Europe may require modifications in crop selection
and irrigation scheduling to avoid waterlogging and soil degra-
dation. Concerning urban planning, cities and municipalities can
leverage DISTENDER’s projections to enhance climate resilience
in infrastructure development. For example, in regions facing
increased storm intensity and higher rainfall variability, storm-
water management plans should incorporate permeable pave-
ments, rain gardens, and improved flood defenses. Heatwave
projections can inform cooling strategies, including increased tree
cover, cool roofing technologies, and the design of urban spaces to
mitigate the urban heat island effect.

Climate variability significantly impacts renewable energy pro-
duction, particularly wind and solar power. By using DIS-
TENDER’s projections of wind variability and solar radiation
trends, energy grid operators and planners can optimize the
placement of wind turbines and solar farms. For instance, pro-
jected shifts in wind patterns in Northern Europe can influence
offshore wind farm efficiency, while solar energy production in
Southern Europe may benefit from reduced cloud cover.

The availability of high-resolution hourly climate data provides
valuable input for governmental and institutional decision-
making processes. Climate-sensitive sectors, such as public
health and disaster management, can use this data to refine
heatwave action plans and emergency response strategies. The
probabilistic nature of the downscaled projections allows for more
accurate risk assessments, helping policymakers prioritize adap-
tation investments based on multiple climate change scenarios.
Furthermore, the European Union’s Green Deal and national
adaptation frameworks can integrate DISTENDER’s projections to
set more precise climate goals. For example, policymakers aiming
to achieve net-zero emissions can use localized temperature pro-
jections to assess the potential for urban heat stress reduction via
green infrastructure initiatives.

To demonstrate the practical application of DISTENDER’s pro-
jections, a case study was conducted in the Metropolitan City of
Turin (CMTo), an urban area with complex topographical and
climatic conditions. Using statistical downscaling, high-resolution
temperature and precipitation projections were generated,
allowing city planners to assess climate risks at the neighborhood
level. The key findings are: i) Under SSP5-8.5, CMTo is expected to
experience temperature increases of up to 4 °C by 2050, with the
most significant warming during summer; ii) projected precipita-
tion trends indicate a decrease in overall rainfall but an increase in
extreme precipitation events, elevating the risk of flash floods; iii)
the urban heat island effect is likely to intensify, requiring addi-
tional cooling interventions, such as expanded tree planting and
reflective surface materials in urban design. Based on these pro-
jections, CMTo’s adaptation plan now includes revised heat
emergency protocols, climate-resilient infrastructure investments,
and a focus on enhancing public awareness of climate risks.

To maximize the utility of DISTENDER’s climate projections,
stakeholders should consider the following implementation
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strategies: a) Incorporate climate projections into land-use plan-
ning, zoning regulations, and disaster preparedness programs in
local government and municipalities; b) enable water manage-
ment authorities to develop integrated water resource manage-
ment plans using projected precipitation variability data; support
urban planners and architects in designing climate-adaptive
infrastructure and buildings to withstand future climatic condi-
tions; c) training energy sector technicians to utilize wind and
solar projections to optimize renewable energy investments; d)
supporting agricultural policy makers in adjusting policies to
encourage climate-smart agricultural practices and sustainable
water use.

Therefore, the DISTENDER project bridges the gap between global
climate modeling and localized adaptation needs, providing
actionable climate intelligence for multiple sectors. By integrating
these high-resolution projections into decision-making frame-
works, stakeholders can enhance resilience against climate change
impacts and develop sustainable adaptation strategies tailored to
specific regional challenges. As climate conditions continue to
evolve, continued refinement and expansion of downscaling
methodologies will further improve the accuracy and applicability
of climate services, reinforcing the ability of societies to mitigate
and adapt to climate risks effectively.

1. Introduction

One of the main obstacles when studying climate-related risks is that
Earth System Models (ESM) have a coarse-resolution grid which is un-
able to capture local phenomena playing a very important role in the
regional climatic conditions, particularly for the occurrence of natural
hazards and their impacts. For these reasons, it is essential that future
climate projections take better into account the peculiarities of each area
in order to understand future climate-related risk more reliably.

In 1996 World Climate Research Programme (WCRP) initiated a
project to assess and compare global coupled climate model experi-
ments, popularly known as Coupled Model Intercomparison Project
(CMIP). The project completed five phases until 2014, with tremendous
success in providing multi-model output to climate researchers and users
internationally. It has thus turned out to be a cornerstone of global
climate change evaluations.

The successor phase six (CMIP6) of the project began in 2016 to
sustain the progress made in understanding climate change and associ-
ated evolution with updated climate models. CMIP6 is visioned to sup-
port WCRP grand science challenges by focusing on three key scientific
questions: 1) What is the earth system’s response to forcing? 2)What are
the sources of systematic climate model biases and their impact? 3) How
can future changes in the earth’s climate be assessed involving intricate
internal variability and predictability?

These objectives are elaborated through 21 sub-projects known as
MIPs, for example, aerosol chemistry, carbon cycles, radiative forcing,
volcanic eruptions, ocean, land surface, ice sheets, monsoons, paleo-
climate, geoengineering, and so forth. CMIP6 was planned initially to
incorporate runs from 100 climate models generated at 49 modelling
groups, and as of 2020, results from nearly 40 models have been pub-
lished, highlighting significant improvements over phase five models.
The historical simulations are available for 1850-2014, whereas future
projections are from 2014 onwards. However, Climate scientists can use
a few initial years of projection simulations for present-day climate
assessment where historical runs are closely connected to future pro-
jections (Eyring et al., 2016).

The future projections are based on the new shared socioeconomic
pathways (SSPs) framework given by the energy modelling community
in contribution to IPCC AR6. Ih this, an integrated approach is attempted
to produce scenarios from the combination of existing representative
concentration pathways for climate projections, socioeconomic consid-
erations, and climate policies. CMIP6 selects a number of SSPs for



R. Monjo et al.

climate model run distributed among two tiers. In particular, Tier 1 was
selected in this study because it corresponds to the core experimental set
of the IPCC ARS, consisting of four socioeconomic pathways: SSP5-8.5,
SSP3-7.0, SSP2-4.5, and SSP1-2.6 (Cos et al., 2022).

Further, to provide adequate climate information at a local scale, it is
necessary to apply a suitable downscaling process based on either sta-
tistical (from now on, SDS) or dynamical (from now on, DDS) approach
on very high resolution (Ribalaygua et al., 2013, Monjo et al., 2016,
IPCC, 2021). For instance, Med-CORDEX (Somot et al., 2018) provides
downscaled CMIP5 and CMIP6 climate scenarios with 12 km grid-
spacing. This is still coarse to the grid-spacing of 3 km and better tar-
geted in the project Developlng STratEgies by integrating mitigatioN,
aDaptation and participation to climate changE Risks (DISTENDER)
project (San Jose et al., 2024). Available km-scale DDS products as
produced in, for example, Copolla et al. (2020) or Ban et al. (2021) cover
limited domains only because of computational costs. On the other
hand, SDS efforts were performed in the Chelsa project (Brun et al.,
2022) and Copernicus-C3S (2020, 2022). However, there exists some
remarkable differences among the different approaches considered. For
example, statistical approaches show two main disadvantages compared
to DDS (Ribalaygua et al., 2013): (1) they have a strong dependency on
historical observations and thus there may be a possible problem of non-
stationarity in the relationships between predictors and predictands
when weak physical linkages are used; (2) they can present spatial or
inter-variable inconsistencies due to independent simulations for each
variable and/or point.

On the other hand, the main advantages of the statistical approaches
are four summarised in two points (Table 1). The first (A) is the low
computational cost, which allows the downscaling of a large number of
ESM outputs and greenhouse gas emission scenarios in order to quantify
uncertainties, but more human resources are required. The second (B) is
that specific information is provided for the same observed reference
data (reanalysis grid point or observatories), and they provide more
details on the probability distribution tails (extremes) and other
microclimatic features. The local detail used in SDS is relevant as the
same future climate may bring changes with respect to the current
climate which could be quite different for points which are a few km
apart.

DDS can be computationally expensive, but it is based on physical
principles representing the actual atmospheric and climatic conditions
and is more suitable for studying climate change than the statistical
approaches relying on past climate relationships.

On the other hand, statistical approaches for observatories have the
advantage of using real data to better simulate all probability distribu-
tions (including heavy-tailed ones). For the particular characteristics of

Table 1
Summary of the main advantages/disadvantages of the SDS and DDS approaches
and their secondary features linked.

Feature SDS DDS

(1) Historical observations of the studied variables b ¢ v
are not needed

Stationary predictors/predictands relationships are
guaranteed (from 1)

Sometimes v/

(2) Spatial and inter-variable consistency is x v
guaranteed

No-predetermined experiments of climate sensitivity X v
(from 2)

Few human resources required (from 2) X v

Low computational cost / fast production of v X
results

Large multi-method, multi-scenario & multi-model v X
ensemble (from A)

Spatial resolution as fine as possible (e.g. for a v X
station)

Products are mainly unbiased (from B) v X

Probability distribution with adequate extreme point v Sometimes

values (from B)
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the statistical approaches used in DISTENDER, the advantages are the
following: (1) predictors selection is based on theoretical considerations,
trying to reflect the physical linkages between predictors and pre-
dictands, which to some extent reduces the stationarity problem; (2) it
operates at the maximum spatial and temporal resolution offered by
ESMs; (3) it considers the full range of data variability; and (4) it per-
forms linear analysis on the hourly basis of physical forcing from
topographic and land-use features after an analogue stratification,
which reduces the non-linearity of the relationships between predictors
and predictands. However, similar to the choice of the specific dynam-
ical downscaling model selected, there exists also an uncertainty source
that is strictly related to the adopted statistical methodology and the
calibration period used for training.

This paper is structured in three main sections: (2) Climate data
sources, including the reference reanalysis and Earth System Models; (3)
Downscaling techniques, where both statistical and dynamical ap-
proaches are described; and (4) Preliminary results to advance early
results of both experiments.

2. Climate data
2.1. Reference climate data

For statistical downscaling, we collected reanalysis datasets from the
European Centre for Medium-Range Weather Forecasts (ECMWF): ERAS
(atmospheric) and primarily ERA5-Land (surface), which were used as
“observed references” to correct the probability distributions of the
CMIP6 climate models (Sect. 3.1.3.1). These datasets were selected for
several key reasons: 1) They provide data for all the climate variables
required in the statistical downscaling; 2) As ECMWF products, they
provide superior data quality compared to other reanalyses, especially
within Europe; 3) They represent the latest global reanalysis versions,
offering improved spatial and temporal resolution over previous itera-
tions; 4) They are freely accessible via the Copernicus Climate Change
Service. Although a Copernicus regional reanalysis for Europe (CERRA;
Ridal et al., 2024) was available, it did not fully cover our initial
modeling domain for progressive nested dynamical downscaling.

ERA5-Land is a surface-specific dataset, focused exclusively on
terrestrial regions, with data available for up to 50 variables. It features
a global grid with a native resolution of 9 km x 9 km (Copernicus-C3S,
2024), regridded to an experimental resolution of 0.073° x 0.073° (our
selection) and a standard resolution of 0.1° x 0.1°. Its vertical coverage
extends from 2 m above the surface down to a depth of 289 cm, struc-
tured into four levels corresponding to the ECMWF surface model. The
dataset provides hourly data from January 1951 to the present, with
monthly updates, though data availability typically lags by around three
months.

ERA5, ECMWEF’s latest atmospheric reanalysis, has been available
since July 2019 and is currently the most accurate atmospheric rean-
alysis dataset. It integrates a vast array of observational data, including
weather station measurements, atmospheric soundings, satellite obser-
vations, and other reanalysis datasets (such as oceanic data), to recon-
struct atmospheric and marine conditions at various levels. ERA5 aims
to reproduce past atmospheric states as accurately as possible. Due to the
high-quality data requirements, satellite-based information is only
available post-release. The dataset covers all of Europe with a regular
spatial resolution of 0.25° (approximately 30 km).

2.2. Climate models

Due to limited computational resources available for the sectoral
modeling of DISTENDER (e.g. air pollution and human health; San Jose
etal., 2024, Relvas et al., 2025), we needed to select three representative
CMIP6 climate models from the starting point of ten CMIP6 climate
models (with subdaily resolution), which were previously downscaled in
the FIREURISK project for the whole European domain at a 0.073°
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spatial resolution (Hetzer et al., 2024). These ten CMIP6 candidates
were then sorted by “level of climate change” in temperature by 2050:
(a) low-change level (25 %) corresponds to MPI-ESM1-2-HR; (b)
medium-change level (50 %) is for EC-EARTH3-Veg; and (c) high-
change level (75 %) is for the CanESM5 model (Table 2). For the
adaptation measures, only the medium-change level simulation has
been considered. Therefore, the main results of this study were focused
on the model EC-EARTH3-Veg since it represents approximately the 50
% climate change level.

Consistently, taking into account the limitations posed by compu-
tational resources, only EC-EARTH3-Veg simulations were dynamically
downscaled. The climate data from CMIP6 models is collected and
archived at Earth System Grid Federation (ESGF) data replication cen-
ters and Copernicus. In DDS, the global historical climate simulation and
future projections were downscaled over the Med-CORDEX domain in
DDS, and over a grid covering Europe (between latitudes 29°N and 56°N
and longitudes between 12°W and 43°E) for SDS.

DISTENDER defined 14 domains to model climate variables in the
five Core Case Studies. For operational reasons, only 11 domain areas
were finally selected from these to produce both hourly and daily
climate scenarios, while the three other (larger) domains were just for
daily products (Appendix A, Table A1). The total dataset produced at an
hourly timescale consisted of 19 variables (in five levels) per three
CMIP6 models with five simulations (historical + four SSP projections)
with 34 or 36 years per each one (Appendix A, Table A2). The high
temporal and spatial resolution (up to one hour and 100 m) combined
with the large number of variables made it necessary to divide the
generated information into year-range files of approximately 100 MB,
which includes all the variables of each vertical level to facilitate nu-
merical computing. In total, this amounts to 111,606 files summing
977,668,560 hourly spatial fields with an average of 1068 points per
domain. The three domains considered for daily scales amount to 52,866
files with 19,296,090 daily fields (Appendix A, Table A3). Therefore,
996,964,650 spatial fields were produced occupying approx. 16 TB plus
intermediate 14 TB datasets.

As a reference of the past climate necessary for the statistical
downscaling, the global reanalyses ERA5 (for atmospheric variables)
and ERA5-Land (surface variables) were selected. They are the latest
reanalysis datasets from the European Centre for Medium-Range
Weather Forecasts (ECMWF), which offer enhanced spatial and tempo-
ral resolutions compared to previous versions. These were selected
because they cover the geographical area pertinent to the DISTENDER
project and since their simulations are recognized as among the most
reliable available (Copernicus-C3S, 2024).

3. Downscaling techniques
3.1. Statistical approaches

3.1.1. General description of the three stages

To date, there is no climate data publicly available at km- scale, < 4
km, over Europe under future scenarios either by dynamical or statistical
downscale approaches. At the beginning of the project, downscaling of
CMIP6 projections was not available yet for Europe (Euro-CORDEX
2022) and they typically provide data at regional scale, i.,e 10-12 km,
while DISTENDER require climate data on local scale. For statistical
downscaling, previous products did not provide hourly resolution for the
climate projections (e.g. the Chelsa project, Brun et al., 2022). Other
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daily products were generated only after the definition of the DIS-
TENDER products (e.g. Copernicus-C3S, 2022).

The statistical downscaling method used in DISTENDER combine
well-known techniques, widely implemented in previous international
projects such as STARDEX (2001-2004), RESCCUE (2016-2020),
ECCLIPSE (2019-2022), CRISI-ADAPT2 (2019-2022) and FIREURISK
(2021-2025) (Ribalaygua et al., 2013; Monjo et al., 2021, Monjo et al.,
2023; Torres et al., 2020; Hetzer et al., 2024). The method consists of
three stages (Fig. 1): (1) Parametric quantile mapping to obtain the same
spatial resolution that the reanalysis at a daily scale, (b) Hourly time
scaling based on analogy by spatial patterns and a transference of daily
extremes to hourly curves from the most similar day in the reanalysis,
and (c) Geostatistical downscaling hour-by-hour applied to the spatial
fields. The reference time period used in SDS was the 1981-2014 period,
bounded by the last year of the Historical experiments (1951-2014) and
the starting of most observed data (about 1980).

3.1.2. First stage: parametric quantile mapping at the reanalysis resolution

3.1.2.1. Approach description. In DISTENDER, past and future climate
simulations are generated using a downscaling technique based on
transfer functions, specifically parametric quantile-quantile mapping
(Benestad, 2010; Monjo et al., 2014, Monjo et al., 2023), with ERA5-
Land as the reference dataset (approximately 8 km spatial resolution).
This method is applied systematically to all climate variables, time se-
ries, and projections (10 climate models x 4 SSPs, when available) using
a two-step process:

@ First, for a given historical experiment, each daily climate variable is
downscaled to the corresponding ERA5-Land reference grid point.
This is achieved by obtaining the Empirical Cumulative Distribution
Function (ECDF) of the reanalysis data, in our common reference
time period (1981-2014), and comparing with that of the historical
experiment from each climate model, which has been previously
bilinearly interpolated. This comparison allows for the derivation of
a quantile-quantile mapping, which is then used to fit parametric
functions. In our approach, five-parameter polynomial curves (y(x)
=ag+aXx+ ... + a4x4) are selected to optimize computational ef-
ficiency, as they require less processing time compared to the
exponential distributions proposed by Monjo et al. (2014, 2016).

@ In the final step, these parametric functions are applied to correct the
SSP-RCP projections at a daily scale over the entire time series,
without differentiation by month or season. The resulting down-
scaled projections are generated for a grid encompassing all Euro-
pean countries, maintaining the same spatial resolution as ERA5-
Land.

The selection of transfer functions depends on the statistical char-
acteristics of each climate variable. If a variable follows a smoother
distribution (e.g., linear uniform or Gaussian, as seen in temperature and
humidity), the transfer function is based on increments (f):

f : S(ERA5)—S(ERA5) — S(HIST)
RES = MOD + f(MOD)
where S represents the value-sorting function. Conversely, if the variable

follows an exponential-type distribution (e.g., log-normal, Weibull, or
gamma; see Fig. 2), the function is fitted using multiplicative factors (g)

Table 2

Information about the three CMIP6 climate models selected for DISTENDER.
CMIP6 Model Climate Change level AGM horiz. resolution Responsible centre Reference
CanESM5 Upper (75 %) 2,812° x 2,790° Canadian Centre for Climate Modelling & Analysis Swart et al. (2019)

EC-EARTH3-Veg
MPI-ESM1-2-HR

Medium (50 %)
Lower (25 %)

0,703° x 0,702°
0,938 x 0,935°

EC-EARTH Consortium
Max-Planck Institute for Meteorology (MPI-M)

Doscher et al. (2022)
Von Storch et al. (2017)
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Hourly simulation
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3 Geostatistical downscaling to
the final spatial scales

Green areas (NDVI) s

Blue areas (NDWI) ;

AlC-based backward stepwise
regression model

>

Final product

=4

Fig. 1. Summary of the main three stages considered in downscaling of the climate model outputs for a particular core case study (e.g., Citta Metropolitana di Torino,
CMTo): (1) The first stage is common for all the DISTENDER domains and is based on a parametric quantile mapping applied at the same spatial resolution that the
reference ERA5-Land reanalysis. (2) The second stage consists of an analogy and a transference of curves: The analogue stratification (e.g., Euclidean distance of
relative spatial patterns) serves to find the most similar day for each targeted day by comparing maximum/minimum daily value of the reference reanalysis and the
ESM fields. Then a transference function is applied to force the reference hourly curve to the maximum/minimum value of the targeted day. (3) The final stage is a
classical geostatistical downscaling by Akaike Information Criterion (AIC)-based backward stepwise regression model. In our case, the used predictors were topo-
graphic variables calculated in a Digital Terrain Model (elevation, distance to the seas), albedo to represent ‘grey areas’, Normalized Difference Vegetation Index
(NDVI) to represent ‘green areas’ and Normalized Difference + Water Index (NDWI) to represent ‘blue areas’, selected as three land-cover dimensions. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Example of transfer functions fitted for empirical quantile-mapping
values of: a) gaussian variables (temperature) and b) exponential-type vari-
ables (precipitation). This example corresponds to the historical exponential
data (HIST) from a grid point of Austria (47.27°N, 11.39°E) for EC-EARTH3-
Veg compared to the closest grid point of the ERAS5 reanalysis.

derived from the comparison of target quantile values (from HIST) with
their corresponding reference quantiles (from logarithmic values of
ERAD5):

g : S(log(ERA5))—S(ERA5) /S(HIST), for ERA5 > 0 and HIST > 0

RES = MOD*g(MOD)

where RES is the resulting (daily) climate scenarios with the desired
spatial resolution, and MOD is the merge of historical (HIST) and pro-
jections (PROJ). This implies that extreme values—when MOD falls
outside the distribution tails of HIST—are adjusted using the same
increment (f) or factor (g) as those derived from the empirical tails of the
training sample (HIST). This approach can be directly applied to clas-
sical scalar variables such as temperature, precipitation, humidity, and
pressure, whether they follow smooth or exponential distributions. The
method utilizes polynomial fits of up to the 6th degree, applied to either
linear or logarithmic factors. Since climate change leads to values
extending beyond historical distribution tails, these out-of-range values
are corrected using the final truncated factor from the tail mapping (f or
9.

However, some variables required additional procedures (Table 2).
This approach applies to vectorial variables (wind) and flux variables (e.
g., short- and long-wave downward radiation). Finally, additionally to
the annual and seasonal bias, a Kolmogorov-Smirnov test (Sekhon,
2010) was applied to analyse the model performance.

3.1.2.2. Approach motivation, advantages and limitations. The para-
metric quantile mapping approach was chosen for its balance between
statistical robustness, flexibility across variables, and computational
efficiency over large datasets, as it produced good results in the Cost
VALUE comparative (Gutiérrez et al., 2018). By explicitly fitting transfer
functions to match the cumulative distribution functions of model out-
puts to reanalysis data, it ensures correction of systematic biases not
only in means but in higher quantiles, which is especially important for
extreme events (Monjo et al., 2014, 2016, Monjo et al., 2023).

The parametric form (polynomial curves) reduces storage and
computational demands compared to non-parametric empirical quantile
mapping, which is essential for handling multi-model, multi-scenario
daily projections over Europe. Moreover, by distinguishing between
additive and multiplicative correction schemes depending on variable



R. Monjo et al.

distribution (smooth vs. exponential), the method accommodates a wide
range of physical variables while preserving their statistical character-
istics. However, the approach also has limitations. It assumes stationary
bias structures between historical and future periods, which may not
fully hold under strong climate change. It also relies on the quality and
representativeness of the reanalysis reference data (ERA5-Land), which
can carry its own uncertainties. Finally, the approach can be less
effective in correcting spatial or temporal dependencies, as it operates
point-wise on the grid, although wind components are treated jointly to
address directional dependencies.

3.1.3. Second stage: analogue-based approach for hourly timescale

3.1.3.1. Selected method: Gridded dataset as a reference. CMIP6 model
outputs do not have hourly data but they have 6-hourly and daily fields,
so it is not possible to directly apply a quantile mapping at hourly scale
here. Therefore, to obtain gridded products for all the DISTENDER do-
mains, a second stage used the daily outouts of the first stage (Sec, 3.1.2)
and the hourly fields from ERA5 and ERA5-Land reanalyses as refer-
ences, following three steps:

Analogue stratification: A stratification was performed by using a
Euclidean distance of relative spatial patterns (root of standardized
square differences). This geometrical technique allows to order all the
reference days (in the past) of the reanalyses according to their simi-
larity with each ‘targeted day’. Specifically, we found the most similar
day for each targeted day (from ESM fields) by comparing relative
spatial patterns of daily-aggregated values. For instance, maximum and
minimum temperatures were selected to describe the atmospheric
configuration (clear-sky or cloudy-day patterns) to capture typical
hourly curves for each configuration and region. To ensure physical
consistency among the different variables, the same analogous day was
selected for all the variables simulated.

Parametric daily-to-hourly scaling: For each downscaled climate pro-
jection (to the ERA5-Land grid) and for all climate variables, every
targeted daily field was scaled to an hourly resolution by using the
reference features of the ERA5-Land. Hence, the hourly curve of the
climate variables (e.g., temperature, humidity, and wind) was obtained
from the most similar day (of ERA-Land reanalysis) to the target day. A
parametric transfer function is then applied between the targeted daily
field (e.g. maximum and minimum daily values) to the hourly fields of
the most similar day in the past.

Filtering of jumps: Since every day is simulated separately, possible
jumps may occur, which are smoothed by jointly filtering the three last
hours of each day and the first three hours of the following day. The used
filter is a spline-weighting function between the average trend in these
six hours and their original values, applying the higher smoothing to the
last-first hours (23 h and 00 h).

3.1.3.2. Alternative method: point observations as a reference. Similarly
to the dynamical approaches, statistical grid-based methods have
coherent and robust spatial distributions, but they can underestimate
extreme values (distribution tails) of some climate variables, especially
for precipitation and wind. To complement this issue, an alternative to
the DISTENDER approach is generating climate scenarios at a local scale
by using statistics of direct observations, measured in a point (e.g.
weather station, rain gauge, hygrometer and thermometer, among
others) and then applying point-observation-based bias adjustment or
perfect prognosis approaches.

If there is a sufficient station network density, statistical downscaling
of ESM translates general atmospheric configurations from large-scale
predictor fields (of ESM simulations) to local climate information ob-
tained from surface point observations. The recommended method is a
two-step analogue-transference approach which combines an analogue
stratification and parametric transference functions. This method has
been validated in international comparisons for climate models and
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reanalysis (Ribalaygua et al., 2013; Gutiérrez et al., 2018). The outputs
of this spatial downscaling are time series representing the climate of the
reference points, the same points as the observatories or the reanalysis
grid points used for training the method.

3.1.4. Third stage: geostatistical downscaling to the final spatial scales

At this stage, a topography-based multi-linear interpolation was applied
to the 8 km-resolution downscaled model outputs (trained with the time
series from the ERA5-Land reanalysis) to generate a finer resolution.
Particularly, for each climate variable simulated by the CMIP6 models,
the last stage is applied according to three steps:

1) For all variables (Table 2) and each projected day (with
0.073°x0.073° resolution, ~8 km), a geostatistical interpolation
allowed to obtain a high-resolution grid by using AIC-based stepwise
multi-linear regression (Venables and Ripley, 2002) with geograph-
ical variables (altitude, latitude, longitude, distance to the Atlantic
Ocean and Mediterranean Sea) and Corine-2018 (EEA, 2020) land-
cover variables (albedo, NDVI, NDWIL; Table 3) used as predictors.

Table 3
Daily variables generated by statistical downscaling and the specific procedures.

Type Variable Specific procedures

2 m air TMax: Maximum These variables are directly obtained

temperature temperature using parametric quantile mapping,
“C) TMin: Minimum assuming a smooth distribution.
temperature Additionally, mean temperature is
defined as: TMean = (TMax + TMin)/2
2 m air HRMax: Maximum It is directly corrected by parametric
humidity relative humidity quantile mapping (smooth distribution).

(%) HRMin: Minimum
relative humidity

A post-process was done to limit values
within the physically meaningful range
of 0 % to 100 %.
surface tpr: Total daily (24- This variable is directly generated using
precipitation h) precipitation parametric quantile mapping, assuming
(mm) an exponential probability function. No
additional adjustments are required
because the mathematical process does
not produce negative values.

10m W: Mean wind The wind module (W), defined as W =
Wind module. VU2 + V2, is directly obtained as an
(m/s) U, V: Wind exponential variable. However, since the
components U and V components are not entirely

independent —due to certain wind
directions being more frequent as a
result of topographical influences—, it is
essential to account for this dependency
by considering:

- Mutual dependent contribution (U) =
F((V)), that is the “predictable
contribution” of U as a function of V
and vice versa, where F is a linear
function fitted.

Residual contributions, which are
[Ul:=U — (U) and [V]:=V — (V).
Therefore, three variables are
corrected as smooth distributions: [U],
[V], and (X) (representing either (U) or
(V). The corrected wind components
are then obtained as V'=[V]'+(V) and
U'=[U] + F((V')). Finally, the
corrected components U’ and V' are
normalized to derive the wind
direction 0, and the final wind
components are computed as U”” = W’
cos 0 and V'’ = W’ sin 6

The transfer function is applied to the
total solar radiation from ERAS5-Land.
Subsequently, long-wave and short-wave
radiation components are separated
based on the original ratio provided by
the climate model.

Solar radiation
(W-m™?)

LWD: Long-wave
down radiation
SWD: Short-wave
down radiation
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2) Similarly, for each day, residual errors of the AIC-based stepwise 3) Finally, the projected value for each day is obtained by adding the
regression are interpolated from the original grid (0.073°x0.073°) to result of 1) and 2), obtaining climate scenarios in the high-resolution
the final grid (e.g., 1000 m x 1000 m or 30 m x 30 m) by using a grid at an hourly timescale (Fig. 3).
simple bilinear model (using latitude and longitude as predictors).
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3.2. Dynamical downscaling

3.2.1. General description

Dynamical downscaling is an approach to obtain high-resolution
climate simulations using regional climate models (RCMs) or limited
area models running with ESM outputs as lateral boundary forcing
(Trzaska and Schnarr, 2014). Since it is based on the physical laws of
fluid mechanics and thermodynamics, dynamical downscaling has su-
premacy to hold true even in changing climate conditions. However, the
limitation is that it is computationally more expensive than statistical
downscaling (Tang et al., 2016).

State-of-art dynamical downscaling efforts encompass European
initiatives such as Med-CORDEX, EURO-CORDEX, and the European
Climate Prediction (EUCP) system project. Dynamical downscaling of
CMIPS is available from these projects; however, the projections of the
most recent generation of intercomparison project, i.e. CMIP6, were
under completion in dynamical downscaling at the beginning of this
project (Dyrrdal et al., 2018). In addition, when it becomes available, it
will provide information at regional scale, while DISTENDER aims for
climate information at local scale, i.e., higher resolution.

Therefore, in DISTENDER, dynamical downscaling (DDS) of the
CMIP6 EC-Earth3-Veg over Med-CORDEX domain (WCRP MedCORDEX,
http://www.medcordex.eu) at km-scale (also known as convection-
permitting, i.e. grid-spacing < 4 km) was performed. The decided
spatial resolution for DDS is 3.9 km which is expected to sufficiently
resolve important processes to produce climate information at local
scale for the DISTENDER core case studies and was just computationally
afforable. The climate model and simulation design are described in the
following sub-sections.

3.2.2. Model features

The ICOsahedral Nonhydrostatic (ICON) (Zangl et al. (2015, 2022)
model is selected for dynamical downscaling within the DISTENDER
project. ICON is an outcome of a collaboration between Deutscher
Wetterdienst (DWD) and Max Planck Institute for Meteorology (MPI-M).
It can be used for both numerical weather prediction and climate sim-
ulations. As the name suggests, ICON’s numerical grid is based on the
icosahedron, i.e., the spatial area is divided into a triangular mesh and
has the terrain-following vertical coordinate. The model dynamics in-
volves fluid motion equations integrated forward in time. Additional key
components of ICON are numerical advection of atmospheric quantities
like cloud water and humidity, and parameterizations of unresolved
physical processes. The temporal integration in ICON utilizes a combi-
nation of the Matsuno scheme and the Heun scheme (Prill et al., 2022).

ICON for climate simulations can be applied in either a global set-up
or a limited-area set-up driven by both global reanalyses and global
climate projections. Here, we use the limited-area model configuration
of ICON-CLM version 2.6.5, which is actively developed in the CLM-
Community (http://www.clm-community.eu) and is a successor of
COSMO-CLM (successfully applied before and still used in many EU
projects like ENSEMBLES, BRAHMATWINN, SOCLIMPACT, EUCP). The
regional domain selected for dynamical downscaling is alike CORDEX
region 12 (i.e., Mediterranean basin, Med-CORDEX, https://www.med
cordex.eu), as shown in Fig. 4. It allows producing the required mete-
orological variables, especially for the core-case studies sub-domains. In
addition to the suitable configuration of ICON-CLM to our domain, we
used TERRA-URB land-surface scheme (Wouters et al., 2017) due to its
more detailed representation of urban and urban change effects.

Due to computational constraints (i.e., computing and storage re-
sources), dynamical downscaling simulations in DISTENDER driven by
only one CMIP6 model, EC-Earth3-Veg, that has medium sensitivity to
climate change compared MPI-ESM1-2-HR and CanESM5 models.

Further, the temporal coverage of dynamical downscaling simulation
is 11 years each; the first year is considered as a spin-up period.

Analogous to the statistical downscaling, a historical simulation and
four SSPs future simulations have been performed (Table 4).Table 5.
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Fig. 4. The model domain selected for dynamical downscaling using
ICON-CLM.

A 10-year present simulation by dynamical downscaling (DDS) of
EC-EARTH3-Veg (spin-up 2010, historical 2011-2014, SSP126
2015-2020) was primarily analysed for precipitation and temperature
bias in the seasonal and annual mean. For a better bias assessment and
adjustment of the DDS outputs, gridded observational data for the Eu-
ropean region (E-OBS, Cornes et al 2018) is used along with the provided
boundary forcing (EC-EARTH3-Veg).

3.2.3. Post-processing

The output of the DDS simulations have been post-processed to fit the
defined domains of DISTENDER core case studies as well as the spatial
and temporal resolutions (Table A1). Post-processing steps also included
bias adjustment for the near-surface temperature and precipitation to
the ICON-CLM output (Fig. 5). It is well known that regional model
simulations suffer from two types of biases 1) inherited from driving
ESM and 2) due to model physics. These biases have the potential to
further influence the performance of impact models running on input
from regional climate models (Seaby et al., 2013). However, different
bias-adjustment techniques can be employed to meteorological vari-
ables, especially precipitation and temperature, to improve the quality
of climate data produced by RCMs.

We used the gridded observational E-OBS (Cornes et al 2018) data as
a reference for precipitation bias adjustment. Further, due to data
scarcity in the southern Mediterranean by E-OBS, the IMREG satellite
(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07/summary)
has been used to fill in missing reference data. E-OBS is an ensemble
dataset available on a 0.1 degree regular grid for daily precipitation
sum, among other climate variables. Version 27.0 has been used here.
For temperature, we used instead the CRU TS dataset (Harris et al.,
2020), version 4.07 https://crudata.uea.ac.uk/cru/data/hrg/) as a
reference for bias adjustment, The reason is in known E-OBS infrequent
issues in representing correct daily maximum and minimum tempera-
tures (https://surfobs.climate.copernicus.eu/userguidance/known_iss
ues_eobs.php). The CRU TS dataset is a gridded observational-based
dataset over land at 0.5°x0.5° grid-space, and monthly time resolu-
tion. To be able to apply bias-adjustment over sea, we used 2-meter
temperature over sea from ERA5 data (Hersbach et al., 2020).

The casuistic between SDS and DDS is distinct mainly due to the use
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Table 4
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Assignment between ten simplified land cover types and three physical predictors for a geostatistical downscaling (albedo, NDVI and NDWI). As input, we used 44

Corine-2018 categories (EEA 2020).

Simplified land cover type Gathering of land covers Albedo NDVI NDWI
urban 1,2,3,4,5,6,7,8,9 0.2 0.08 0.3
green urban 10,11 0.15 0.75 0.6
arable lands 12,13,14,15,16,17,18,19,20,21 0.3 0.3 0.45
forest agroforest 22,23,24,25 0.13 0.8 0.7
grasslands moors shrub 26,27,28,29 0.3 0.3 0.55
sands bare rocks 30,31,32 0.4 0.4 0.15
burnt areas 33 0.05 0.05 0.2
glaciers snow 34 0.7 0.7 0.15
marshes peat bogs 35,36,37 0.15 0.2 0.6
water courses & lagoons 38,39,40,41,42,43,44 0.1 0.05 0.9
Corine-2018 categories: 1 continuous_urban_fabric 23 broad_leaved_forest
2 discontinuous_urban_fabric 24 coniferous_forest
3 industrial_or_commercial_units 25 mixed_forest
4 road_&railnetworks_&associated_land 26 natural_grasslands
5 port_areas 27 moors_and_heathland
6 airports 28 sclerophyllous_vegetation
7 mineral_extraction_sites 29 transitional_woodland_shrub
8 dump_sites 30 beaches_dunes_sands
9 construction_sites 31 bare_rocks
10 green_urban_areas 32 sparsely_vegetated_areas
11 sport_and_leisure_facilities 33 burnt_areas
12 non_irrigated_arable_land 34 glaciers_and_perpetual_snow
13 permanently_irrigated_land 35 inland_marshes
14 rice_fields 36 peat_bogs
15 vineyards 37 salt_marshes
16 fruit_trees_and_berry_plantations 38 salines
17 olive_groves 39 intertidal flats
18 pastures 40 water_courses
19 annual_crops_and_permanent_crops 41 water_bodies
20 complex_cultivation_patterns 42 coastal_lagoons
21 land_principally_occupied_by_agriculture_with_significant_natural_areas 43 estuaries
22 agro_forestry_areas 44 sea_and_ocean.

Table 5

Simulation plan for Dynamical-downscaling set-up within DISTENDER.
Simulation No. Period Forcing/LBCs
) Boundary Forcing ‘

Historical simulation

(1-year spin up, 2011-2020)
2. Future Projections

(1-year spin up, 2041-2050)

EC-EARTH3-Veg

EC-EARTH3-Veg/SSP126
EC-EARTH3-Veg/SSP245
EC-EARTH3-Veg/SSP370
EC-EARTH3-Veg/SSP585

of ERA5 and ERA5-Land reanalyses as references for SDS, which mostly
bias-corrects all the variables at different vertical levels, while DDS
directly produces physically-consistent fields at all the levels avoiding
the need of using the reanalysis dataset to obtain all its variables.
Therefore, by direct result (effect of the training process from the
reanalysis data), SDS outputs are practically unbiased, so no additional
procedures are required in contrast to the significant systematic errors in
temperature and precipitation that are usually obtained from DDS.
Instead of reanalysis, regular grids of observations (such as E-OBS and
CRU TS) are more commonly used to correct bias of DDS outputs, except
for the maritime areas

For the DDS in DISTENDER, we assessed different methods and opted
for relatively simple, but robust bias-adjustment methods for precipi-
tation and temperature, respectively;

a) Precipitation bias-adjustment. A simple method known as local
intensity scaling (Schmidli et al., 2006, Dobler and Ahrens, 2008)
was used to adjust model produced precipitation as per observation
in the historical period. The simulated precipitation was adjusted at
daily scale and the coarser spatial resolution of the observational
reference dataset (i.e., 0.1°). The coarsened simulated data is
adjusted in two main steps: The first step is to adjust the frequency of

RCM ICON-CLM
(km-scale)

‘ Post-Processing

Bias-

Adjustment

Precipitation
Local Intensity
Scaling

Temperature

Mean
correction

Fig. 5. Schematic of Dynamical-Downscaling approach within DISTENDER.

wet days (i.e., days with observed precipitation > 0.1 mm/day). This
is achieved by adjusting the threshold of the simulated wet days (the
model typically simulates too many wet days in Europe which leads
to spatially varying thresholds larger than 0.1 mm/day). The second
step is a multiplicative scaling of the precipitation intensities with
the ratio of the means of simulated and observed wet day intensities.
The scaling factors vary in space around the value 1. After coarse-
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grid adjustment the fine-grid multiplicative increments are applied b) Temperature bias-adjustment. The applied bias-adjustment for
to the simulated precipitation again. The same adjustment using the temperature is based on correcting daily minimum temperature and
same wet day thresholds and scaling factors is applied to the future diurnal temperature range (DTR). Considering DTR in temperature’s
period simulation. BA helps maintain physically realistic relationships between

ERA5-Land
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Fig. 6. Mean values of precipitation (mm) in the 2011-2020 period for the annual period according to E-OBS (top left) and ERA5-Land (top right) and bias (mm) of
the EC-EARTH3-Veg downscaled with the statistical approach (SDS, middle panels) and dynamical approach (DDS, bottom panels). On the right, the statistical
downscaling is compared to ERA5-Land since it was the basis for the daily quantile mapping, while the bias adjustment of the dynamical downscaling (DDS BA) was
performed with E-OBS in Europe. The historical experiment of EC-EARTH3-Veg was extended with the SSP1-2.6 projection to complete the 2011-2020 period in both
SDS and DDS approaches.
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maximum and minimum temperatures, and is widely used for
adjusting temperature biases from climate models’ output (Cucchi
et al., 2022; Lange, 2021). The minimum and maximum tempera-
tures in the historical simulation are coarsened to the grid of the
observational reference (0.5°, monthly). This allows the determina-
tion of an additive minimum temperature bias and a multiplicative
bias of diurnal temperature range. These coarse-grid biases are
applied in the adjustment of the model-grid data. The same adjust-
ment using the same biases are applied to the future period
simulation.

Finally, the model data with 3.9 km grid-spacing for all variables
(including bias-adjusted precipitation and temperature) was interpo-
lated to the required spatial resolutions of 9 km and 3 km (Table A1) for
core-case studies.

4. Results and discussion
4.1. Historical simulation assessment

When SDS is considered for the three climate models, the perfor-
mance analysis concluded that the downscaled historical experiment of
EC-EARTH3-Veg presented the smallest bias for precipitation compared
to ERA5-Land in the 1981-2014 period (not shown). The annual pre-
cipitation distribution passed the KS test at a daily scale for the three
downscaled climate models. At a seasonal scale, summer is the worst
simulated period, with July and August systematically failing out the KS
tests for the downscaled EC-EARTH3-Veg, especially for Guimaraes.
Finally, spring and winter seasons are adequately simulated by the
downscaled EC-EARTH3-Veg according to the KS test compared to
ERA5-Land (p-value > 0.05).

To compare the SDS and DDS skills in the past simulation, the his-
torical experiment of the climate models was extended with the SSP1-
2.6 projection, obtaining a complete common period of 10 years
(2011-2020). Systematically, the E-OBS reference estimates a lower
precipitation amount for the mountainous regions than the ERA5-Land
reanalysis for the 2011-2020 period (Fig. 6 top). With this difference,
most patterns found in the bias field of DDS and SDS (Fig. 6 left center
and bottom) can be explained by two reasons. On the one hand, the
deviation between EOBS and ERA5-land is consistent with SDS bias to-
ward EOBS due to the SDS dependence on ERA5-land, and on the other
hand, the parameters of EC-EARTH3-Veg (IFS cycle 36r4) are partially
shared with those ones used in the ECMWF simulations of the ERA5 and
ERA5-Land (IFS cycle 45r1, https://confluence.ecmwf.
int/display/CKB/ERA5-Land). Therefore, SDS generally displays
higher relative biases in precipitation with respect to E-OBS (up to + 50
% in Eastern Europe) than when it is compared to ERA5-Land (smaller
than + 20 %, Fig. 6). This overestimation contrasts with DDS, which
maintains reduced biases about + 10 % across large areas of Northern
and Eastern Europe, reflecting a more constrained adjustment. Consis-
tently with the above mentioned, a common underestimation is found
for some areas (e.g. for Southern Portugal and Eastern Italy) when both
methods are compared to E-OBS. However, for their corresponding bias-
adjustment (BA) basis (E-OBS in DDS-BA and ERA5-Land for SDS), they
show more consistent results, which fluctuates typically around —10 %
to + 10 % depending on the region (Fig. 6 right center and bottom).

Concerning mean temperature, SDS of EC-EARTH3-Veg outputs
showed negative bias downs to —2°C in Northeast Europe. The statistical
downscaling product of the CanESM5 model is an intermediate case,
with low bias during winter (slightly positive up to 1 °C in Central
Europe) and negative bias during summer, especially in Spain (—1°C).

The simulated near-surface (2-meters) temperature from DDS was
also compared to observations (CRU). As in precipitation, temperature
output also suffers from biases inherited from boundary forcing. The raw
EC-EARTH3-Veg and its corresponding DDS present a warm bias ten-
dency in central and east-central parts of Europe. This bias is more
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noticeable during summer in EC-EARTH3-Veg SDS simulation, whereas
the bias magnitude is less for its DDS result. Also, some southern and
central orographic regions simulated by SDS have a cold bias during
winter. In any case, the seasonal bias is not statistically significant for
the 10-year historical simulation of the DDS, which was short due to
computational limitations.

When comparing both downscaling methods with the respective
reference bases (ERA5-Land for SDS and CRU for DDS BA), the sys-
tematic error of SDS is lower than DDS at the elevated regions such as
the Alps (about 3 or 5 °C of bias), which impacts close to the study case
of the CMTo region. However, it is slightly higher (1 or 2 °C) in
Southeastern Europe and northern British Isles (Fig. 7). A few nuances
are also found at other regions of interest for DISTENDER, as this is the
case in the Spanish Central Mountains of the Euraf region.

In summary, there are three main uncertainty sources in the bias
when comparing SDS and DDS: First of all, they use a different training
time period, since the limited computational resources of DDS forced it
to produce a shorter period (2011-2020) than the used for SDS
(1981-2014). Moreover, SDS is naturally compared to the ERA5-Land
reanalysis as it has been used to train the SDS procedure in the
1981-2014 period. For this reason, SDS — ERA5-Land bias is expected to
be larger in 2011-2020 than in the natural baseline of 1981-2014, but it
significatively presents less bias than SDS — EOBS. Finally, SDS is not
exactly unbiased with respect to ERA5-Land even in the 1981-2014
period because the procedure is based on a parametric quantile mapping
(no empirical quantile transference). In order to correct climate pro-
jections, empirical quantile mapping (i.e. actually unbiased) cannot be
applied because unobserved values in the future projections are trun-
cated to actual observed values (from the past), which invalidates the
method for climate change analysis. In contrast, the parametric
approach avoids overfitting by capturing simpler transfer functions be-
tween the simulated and the observed CDFs. In particular, the use of
four-parameter polynomials does not guarantee that the quantile map-
ping be unbiased but it avoids overfitting.

4.2. Climate projections

In the climate projections (2041-2050) driven by EC-EARTH3-Veg,
both DDS BA and SDS agree on certain large-scale patterns, such as an
increase in precipitation in Northern Europe and a decrease in Southern
Europe. However, the magnitude of these changes differs. Under all the
SSP scenarios, for example, both SDS and DDS project precipitation in-
creases in Central Europe exceeding + 15 % or + 25 % relative to the
historical period (2011-2020). Moreover, both methods consistently
indicate wetter conditions in the Alpine regions but differ in the spatial
extent of these increases, with DDS BA showing more localized inten-
sification for the worst SSP scenarios (Fig. 8). Meanwhile, in Southern
Europe, particularly over Spain and Italy, DDS projects decreases up to
—30 %, whereas SDS suggests a more moderate reduction, around —15
% to —20 %. Despite these differences, a consensual pattern emerges: a
wetter north and a drier south across Europe, though the intensity and
spatial variability of changes are notably method-dependent. This
discrepancy could reflect DDS’s sensitivity to dynamic atmospheric
processes that would amplify responses (e.g. zonal circulation versus
cyclogenesis frequency) under high-emission scenarios.

Concerning the temperature projections (Fig. 9), both methods show
similar paths but some differences can be pointed out, specifically in
SSP1-2.6. In this scenario the DDS BA method projects a uniform slight
warming across Europe (+1°C), whereas the SDS method suggests cooler
anomalies, particularly in Eastern Europe and the Balkans (down to
—2.25 °C). For SSP2-4.5, both methods predict a general warming
(+1.75 °C), but the SDS approach depicts more intense (+1.75 °C)
warming in the southwest (North Africa region). On the other hand, the
SSP3-7.0 scenario shows a slightly lower warming than which can be
seen in the SSP2-4.5, with a similar warming rate in southern Europe,
but even with a slight cooling around central Europe, in both DDS BA
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Fig. 7. The same as Fig. 9 but for average temperature, while the reference dataset is CRU.

and SDS. This can be explained because of differences existing within
each SSP which affect the initialization of the climate models. In this
case, since the projections end before 2040 these differences can allow
us to find this paradox in the near-term projections. Moreover, this could
also be driven by the member used in GCM, so it would be necessary to
use the ensemble member to reduce the uncertainty of the single
member dependence. Finally, in the worst-case scenario (SSP5-8.5),
both methods show substantial warming across Europe (>2.25 °C) with
the DDS presenting a slightly smoother gradients, while SDS emphasizes
greater warming, specially in the south and eastern areas (Spain, Italy
and Balkan regions). Nevertheless, in the two methods a smoother
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warming in the Atlantic facade can be expected for this high-emissions
scenario (France and British Islands with a warming up to + 1.25 °C)
thanks to the temperate effect of the Atlantic Ocean.

As an example of detailed local scenarios for the DISTENDER core
case studies, future projections of seasonal temperature are shown in
Fig. 10. Topographic effects on temperature are more perceptible during
the summer since maximum temperature is sensitive to the elevation
differences, and the nuances at a high spatial resolution are captured by
the SDS method. In consistency with previous studies, the summer is also
the season with more increase in temperature by 2050, up to + 5°C
under the SSP5-8.5 scenario. However, a higher multidecadal variability
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Fig. 8. Climate projections of mean precipitation obtained from DDS BA (left column) and SDS (right column) methods for the historical period (2011-2020, top
row) and for the differences between each SSP (2041-2050) and the historical period means (from the second to the fifth row: SSP1-2.6, SSP2-4.5, SSP3-7.0 and

SSP5-8.5).

is visible especially under the SSP3-7.0 scenario, showing a peak of
warming in the 2031-2040 decade. Spring and Autumn are the seasons
that less warming (only + 2°C) will experience in the region under the
SSP2-4.5 and SSP3-7.0 scenarios, as these projections also show more
expected precipitation (between + 10 and + 20 %) in CMTo for the
following decades (not shown). The increase of moisture during Spring
and Autumn is also related to the increase of temperature in the
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Mediterranean seas, which is expected to produce deeper convective
systems with increase of the precipitation concentration (Monjo et al.,
2016, Monjo et al., 2023).

4.3. Uncertainty analysis

The annual mean precipitation bias from the raw outputs of EC-
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Fig. 9. The same as Fig. 8 but for mean temperature.
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Fig. 10. Example of detailed scenarios per season and period according to the SDS of EC-EARTH3-Veg for maximum hourly temperature in the study area of
Metropolitan City of Turin (CMTo) at a 3 km spatial resolution (D1 domain area, Table Al).

EARTH3-Veg brings about the added values of dynamical downscaling
in representing spatial variability. An overall reduction in wet bias in the
northern parts of the domain was found for DDS compared to EC-
EARTH3-Veg. Also, the precipitation enhancement in orographic re-
gions of central Europe in downscaled simulation improved the dry bias
present in driving ESM.

The discrepancy underlines the limitations of each approach: DDS
might overemphasize physical processes not well-represented at higher
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resolutions, while SDS risks missing critical dynamical feedbacks,
potentially affecting model accuracy in regions characterized by com-
plex topography or local climatic interactions. For instance, SDS might
not adequately reflect localized drought intensification seen in obser-
vational records, suggesting that neither method fully captures the re-
gion’s climatic complexity. These differences highlight critical
implications for impact studies. Consensual results from both methods is
especially crucial for water resource management in the Mediterranean
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basin, since a method’s mixed over- and underestimations could lead to
greater uncertainty in hydrological planning.

Concerning temperature simulations, differences between both
methods are accentuated in the most mountainous regions of Central
Europe but also in some litoral areas of Southeastern Europe. These
differences are due to the ability of the methods to capture to a greater or
lesser extent the characteristics or effects on the temperature variability
from the elevation or the distance to the sea. For instance, SDS in-
corporates a digital elevation model and a field of distance to the see as
two direct predictors during the bias correction procedure, allowing us
to reduce the impact of the systematic error in the most geographically
complex regions.

Therefore, our results provide insights into the strengths of
combining statistically and dynamically downscaled simulations and
pave the way for bias-adjustment before using local-scale climate sce-
narios for DISTENDER case studies. The detailed biases and projections
underline the importance of using complementary methods to provide a
more comprehensive picture of potential climate impacts. By comparing
the strengths and limitations of DDS and SDS, stakeholders can better
assess risks and uncertainties associated with future climate scenarios.

5. Conclusions

The DISTENDER project demonstrates the feasibility and benefits of
integrating cutting-edge statistical and dynamical downscaling methods
to address the limitations of Earth System Models (ESMs) in producing
localized climate projections. By employing a novel three-stage statis-
tical downscaling process, the project developed hourly climate sce-
narios that provide high temporal and spatial resolution. This
innovation ensures compatibility with observed reference data, im-
proves the representation of probability distribution tails (e.g., extreme
values), and captures microclimatic features that are critical for under-
standing local climate risks. For instance, hourly scaling based on
analogies and geostatistical adjustments allows the fine-tuning of
climate projections to a resolution of < 10 km across Europe, enabling
enhanced applicability for urban and regional planning.

The SDS approach showcased strengths in computational efficiency,
enabling the downscaling of multiple ESMs and emission scenarios to
quantify uncertainties systematically. However, it also highlighted
persistent challenges, such as biases in precipitation and temperature
across regions and seasons. For example, according to the median
simulation (EC-EARTH3-Veg), negative precipitation biases of up to —1
mm/day in summer were noted in southern Europe, while temperature
biases ranged from —2°C in Northeast Europe to + 1°C in central regions
during winter. Despite these biases, the Kolmogorov-Smirnov (KS) tests
confirmed the statistical consistency of daily precipitation and temper-
ature distributions for most models and seasons (with p-value > 0.05).

DDS, performed with the ICON model, offered additional insights
into the spatial and seasonal variability of climate projections. By
leveraging high-resolution domains (e.g., 3 km for core case studies), it
successfully improved the representation of complex atmospheric pro-
cesses, particularly over orographic regions. This method mitigated
some of the statistical method’s limitations, such as spatial in-
consistencies and dependency on historical relationships. The reduction
of wet biases in northern Europe and the enhanced depiction of summer
dry periods in central Europe highlight the added value of dynamical
approaches, albeit at higher computational costs.

Projections of future climate scenarios under various socioeconomic
pathways revealed significant potential impacts on precipitation and
temperature patterns across Europe. For instance, under SSP5-8.5,
summer precipitation is projected to decrease by up to —20 % in
southern Europe, while central and northern regions may experience
increases of + 10 % to + 15 %. Temperature projections indicate
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pronounced warming of up to + 5°C during summer in southern Europe,
with smaller increases of + 2°C to + 3°C in northern areas. These pro-
jections provide critical insights for assessing climate hazards, such as
heatwaves, droughts, and increased flood potential, and for developing
targeted adaptation measures.

The performance of both DDS and SDS are adequate, showing
consistent projections under different SSP scenarios. When possible, the
combination of DDS and SDS is desired to measure the impact (sys-
tematic errors) from the statistical method choice, although SDS allows
the production of a large number of ESM simulations due to its higher
performance in computational cost efficiency. Moreover, it is the first
time that an European project generates a high temporal (hourly)
resolution-ensemble, very appropriate for feeding impact models. That
is, the consistency and reliability of DISTENDER’s scenarios make them
valuable tools for climate impact assessments and policy planning,
deriving possible adaptation measures.Their usability extends beyond
the project’s scope, supporting stakeholders in sectors like agriculture,
water management, urban planning, and disaster risk reduction. The
availability of high-resolution hourly data is particularly relevant for
short-term operational planning and long-term strategic initiatives.
Additionally, the dataset offers opportunities for interdisciplinary
research, enabling integration with socio-economic and ecological
models to evaluate broader climate impacts.

In summary, the DISTENDER project underscores the importance of
leveraging both SDS and DDS approaches to achieve comprehensive and
actionable climate projections. While statistical methods offer compu-
tational efficiency and extensive ensemble outputs, dynamical ap-
proaches provide the spatial and physical accuracy needed for regional
applications. The combined methodology represents a significant
advancement in climate modeling, paving the way for more precise,
localized, and user-focused climate scenarios. Future work should focus
on refining bias correction techniques, further exploring the integration
of these approaches, and addressing emerging challenges such as non-
stationarity and extreme event simulation, at the same time that opti-
mizes accuracy and computational efficiency.
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Appendix A:. Description of the DISTENDER climate data

This appendix describes the characteristics of the climate data generated in DISTENDER. Table Al shows details of the 14 domains defined in
DISTENDER to model climate variables in the five Core Case Studies, with 11 domain areas at hourly scales and three at a daily scale. Table A2 details
the total dataset produced at hourly scale, consisting of 19 variables (in five levels) per three CMIP6 models with five simulations (historical + four SSP
projections) with 34 or 36 years per each one. Similarly, Table 3 described the data produced for the three domains considered for daily scales.

Table A1

Core Case Study domains in the DISTENDER project. The five Core Case Studies are: (1) Guimaraes; (2) The Metropolitan City of Turin (CMTo: Citta Metropolitana di
Torino); (3) the Hanze University of Applied Sciences (HUAS) that represents the North-east of the Netherlands; (4) the European Agroforestry Federation (Euraf) that
represents Dehesas (Spain) and Montados (Portugal) areas and (5) Austria.

Core Case Domain  Time Official Official Produced Produced Resol. Mean Zonal Meridional Nlon Nlat Ncells
Study area resol. Lon Lat Lon range  Lat range © resolution resolution resolution
range range (approx) (longitude (latitude
(km) km) km)
Guimaraes DO hourly —8.666; 41.183; —8.710; 41.120; 0.09 9 7.5 9.9 11 7 77
—7.765 41;701 -7.72 41.750
D1 hourly —8.666; 41.183; —8.670; 41.172; 0.01 1 0.8 1.1 91 54 4914
—7.765 41;701 —7.76 41.713
D2 hourly —8.462; 41.349; —8.466; 41.343; 0.005 0.5 0.4 0.6 68 51 3468
—8.130 41.592 —8.126 41.598
D3 hourly —8.373; 41.415; —8.374; 41.414; 0.001 0.1 0.1 0.1 119 49 5831
—8.256 41.462 —8.255 41.463
CMTo DO hourly 6.371; 44.121; 6.340; 44.060; 0.09 9 7.5 9.9 27 22 594
8.745 45.997 8.770 46.040
D1 hourly 6.371; 44.121; 6.350; 44.099; 0.03 3 2.5 3.3 80 64 5120
8.745 45.997 8.750 46.019
D2 hourly 6.500; 44.670; 6.490; 44.660; 0.01 1 0.8 1.1 172 100 17,200
8.200 45.650 8.210 45.660
D3 hourly 7.366; 44.835; 7.361; 44.829; 0.005 0.5 0.4 0.6 131 94 12,314
8.011 45.293 8.016 45.299
HUAS DO hourly 3.995; 51.535; 3.937; 51.47; 0.09 9 7.5 9.9 44 28 1232
7.839 53.932 7.890 53.9935
D1 hourly 4.169; 52.072; 4.153; 52.056; 0.03 3 2.5 3.3 109 63 6867
7.408 53.932 7.423 53.946
D2 hourly 5.396; 52.609; 5.385; 52.597; 0.01 1 0.8 1.1 187 88 16,456
7.245 53.465 7.255 53.477
Euraf D1 Daily —9.846; 37.830; —9.888; 37.783; 0.09 9 7.5 9.9 102 44 4488
—0.750 41.698 —0.708 41.743
D2 Daily —9.846; 37.830; —9.883; 37.788; 0.09 9 7.5 9.9 73 35 2555
—3.350 40.896 -3.313 40.938
Austria D1 Daily 9.271; 46.019; 9.230; 45.96; 0.09 9 7.5 9.9 90 41 3690
17.290 49.592 17.330 49.65
Table A2

Hourly climate variables (19) simulated in 5 levels [surface (sfc), 2 m, 10 m, 50 m and 200 m] by statistical downscaling in the DISTENDER project year-by-year for the
1981-2014 and 2015-2050 periods under the Historical experiment and four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). All the variables of the same
level are gathered in a unique file per year of simulation.

Level Variable Short name Long name Units Scale factor
sfe rad Total radiation Hourly accumulated downward total radiation at surface J/m? 3600
short_rad Shortwave radiation Hourly accumulated downward shortwave radiation at surface J/m? 3600
long_rad Longwave radiation Hourly accumulated downward longwave radiation at surface J/m? 3600
prec Precipitation Hourly cumulative precipitation mm 0.1
2m temp Temperature Hourly average air temperature °C 0.1
rel_hum Relative humidity Hourly average air relative humidity °C 0.1
press Pressure Hourly average of air pressure given at local elevation hPa 0.1
10m u-wind u-component wind Hourly average of eastward wind m/s 0.1
v-wind v-component wind Hourly average of northward wind m/s 0.1
50 m & 2000 m temp Temperature Hourly average air temperature °C 0.1
relhum Relative humidity Hourly average air relative humidity % 0.1
press Pressure Hourly average of air pressure given at local elevation hPa 0.1
u-wind u-component wind Hourly average of eastward wind m/s 0.1
v-wind v-component wind Hourly average of northward wind m/s 0.1
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Table A3

Climate Services 40 (2025) 100623

Daily climate variables (33) simulated in 5 levels (sfc, 2 m, 10 m, 50 m and 200 m) by statistical downscaling in the DISTENDER project year-by-year for the 1981-2014
and 2015-2050 periods under the Historical experiment and four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). All the variables of the same level are

gathered in a unique file per year of simulation.

Level Variable Short name Long name Units Scale factor
sfe rad Total radiation Mean power of downward total radiation at surface in a day W/m? 1
short_rad Shortwave radiation Mean power of downward shortwave radiation at surface in a day W/m? 1
long_rad Longwave radiation Mean power of downward longwave radiation at surface in a day W/m? 1
prec Precipitation Total accumulate precipitation in a day mm 0.1
2m temp_mean Mean temperature Mean air temperature of a day °C 0.1
temp_min Minimum temperature Minimum air temperature of a day °C 0.1
temp_max Maximum temperature Maximum air temperature of a day °C 0.1
relhum_mean Mean relative humidity Mean air relative humidity of a day % 0.1
relhum_min Minimum relative humidity Minimum air relative humidity of a day % 0.1
relhum_max Maximum relative humidity Maximum air relative humidity of a day % 0.1
press Pressure Average of air pressure given at local elevation in a day hPa 0.1
10m u-wind_mean Mean u-component wind Average of eastward wind in a day m/s 0.1
v-wind_mean v-component wind Average of northward wind in a day m/s 0.1
50 m & 2000 m temp_mean Mean temperature Mean air temperature of a day °C 0.1
temp_min Minimum temperature Minimum air temperature of a day °C 0.1
temp_max Maximum temperature Maximum air temperature of a day °C 0.1
relhum_mean Mean relative humidity Mean air relative humidity of a day % 0.1
relhum_min Minimum relative humidity Minimum air relative humidity of a day % 0.1
relhum_max Maximum relative humidity Maximum air relative humidity of a day % 0.1
press Pressure Average of air pressure given at local elevation in a day hPa 0.1
u-wind_mean Mean u-component wind Average of eastward wind in a day m/s 0.1
v-wind_mean v-component wind Average of northward wind in a day m/s 0.1
temp_mean Mean temperature Mean air temperature of a day °C 0.1

Data availability
Data will be made available on request.
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