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Darío Redolat b, César Paradinas b, Dominic Royé f, Bodo Ahrens c, Roberto San José g
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A B S T R A C T

This paper discusses statistical and dynamical methods used to produce local (grid-spacing < 4 km) and Euro
pean (~10 km) climate scenarios that were used as input for multi-sectoral impact models in the DevelopIng 
STratEgies by integrating mitigatioN, aDaptation and participation to climate changE Risks (DISTENDER) 
project, and shares the main results with a special focus on temperature and precipitation. The statistical 
downscaling consisted of three stages: (1) a parametric quantile mapping at a daily scale; (2) an analogous- 
transference function of hourly curves for each day, and (3) a classical geostatistical downscaling. This three- 
stage technique was applied to three representative Earth System Models according to three different climate- 
change level (being EC-EARTH3-Veg the medium case) under four shared socioeconomic pathways (SSP1-2.6, 
SSP2-4.5, SSP3-7.0, SSP5-8.5). In addition, dynamical downscaling was also considered. Particularly, the 
ICOsahedral Nonhydrostatic model downscaled the EC-EARTH3-Veg model to computationally costly km-scale 
resolution under all four pathways. Both downscaling approaches show consistent behaviour for the down
scaled model under the different pathways. Results indicate historical biases in precipitation about ± 10 % in 
general, while temperature biases ranged from − 2◦C to + 1◦C across different regions and seasons. Under SSP5- 
8.5, summer precipitation in southern Europe is projected to decrease by up to 20 %, while northern Europe 
experiences increases of + 10 % to + 15 %. Temperature increases under the same scenario reach + 5◦C in 
summer across southern Europe, with smaller increases of + 2◦C to + 3◦C in northern regions. These findings on 
management for uncertainty levels demonstrate the utility of combined downscaling approaches for local climate 
risk assessment and adaptation strategies.

Practical implications

The DISTENDER project provides high-resolution climate sce
narios that can directly support policy makers, urban planners, 
and climate adaptation practitioners in developing informed 
strategies for mitigating climate risks (https://distender.eu/). By 
integrating statistical and dynamical downscaling approaches, 
DISTENDER offers climate projections at both local (<4 km) and 

European (~10 km) scales, ensuring more precise climate infor
mation tailored to specific regions and decision-making needs.

One of the primary applications of DISTENDER’s climate pro
jections is in climate risk assessment for urban areas, agricultural 
regions, and coastal communities. For instance, in Southern 
Europe, where summer precipitation is projected to decrease by 
up to 20 % under the SSP5-8.5 scenario, water management au
thorities can use these projections to optimize reservoir opera
tions, promote water-saving technologies, and implement drought 
mitigation measures. Similarly, Northern Europe’s projected 
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precipitation increases (+10 % to + 15 %) can help urban planners 
reinforce drainage systems to prevent flooding and infrastructure 
damage.

The integration of hourly-scale projections is particularly useful 
for extreme event preparedness, such as to face heatwaves. For 
example, under the same SSP5-8.5 scenario, temperature in
creases of up to 5 ◦C in summer necessitate adaptive strategies, 
such as modifying building designs to improve thermal insulation, 
increasing green urban spaces, and implementing early warning 
systems to protect vulnerable populations from extreme heat 
events.

Sectoral applications of the downscaled climate data include 
agriculture and water resource management. In areas where 
drought risk is expected to intensify, such as Southern Spain and 
Italy, farmers can transition to drought-resistant crops, adopt 
precision irrigation techniques, and implement soil moisture 
conservation practices. In contrast, increased rainfall in Central 
and Northern Europe may require modifications in crop selection 
and irrigation scheduling to avoid waterlogging and soil degra
dation. Concerning urban planning, cities and municipalities can 
leverage DISTENDER’s projections to enhance climate resilience 
in infrastructure development. For example, in regions facing 
increased storm intensity and higher rainfall variability, storm
water management plans should incorporate permeable pave
ments, rain gardens, and improved flood defenses. Heatwave 
projections can inform cooling strategies, including increased tree 
cover, cool roofing technologies, and the design of urban spaces to 
mitigate the urban heat island effect.

Climate variability significantly impacts renewable energy pro
duction, particularly wind and solar power. By using DIS
TENDER’s projections of wind variability and solar radiation 
trends, energy grid operators and planners can optimize the 
placement of wind turbines and solar farms. For instance, pro
jected shifts in wind patterns in Northern Europe can influence 
offshore wind farm efficiency, while solar energy production in 
Southern Europe may benefit from reduced cloud cover.

The availability of high-resolution hourly climate data provides 
valuable input for governmental and institutional decision- 
making processes. Climate-sensitive sectors, such as public 
health and disaster management, can use this data to refine 
heatwave action plans and emergency response strategies. The 
probabilistic nature of the downscaled projections allows for more 
accurate risk assessments, helping policymakers prioritize adap
tation investments based on multiple climate change scenarios. 
Furthermore, the European Union’s Green Deal and national 
adaptation frameworks can integrate DISTENDER’s projections to 
set more precise climate goals. For example, policymakers aiming 
to achieve net-zero emissions can use localized temperature pro
jections to assess the potential for urban heat stress reduction via 
green infrastructure initiatives.

To demonstrate the practical application of DISTENDER’s pro
jections, a case study was conducted in the Metropolitan City of 
Turin (CMTo), an urban area with complex topographical and 
climatic conditions. Using statistical downscaling, high-resolution 
temperature and precipitation projections were generated, 
allowing city planners to assess climate risks at the neighborhood 
level. The key findings are: i) Under SSP5-8.5, CMTo is expected to 
experience temperature increases of up to 4 ◦C by 2050, with the 
most significant warming during summer; ii) projected precipita
tion trends indicate a decrease in overall rainfall but an increase in 
extreme precipitation events, elevating the risk of flash floods; iii) 
the urban heat island effect is likely to intensify, requiring addi
tional cooling interventions, such as expanded tree planting and 
reflective surface materials in urban design. Based on these pro
jections, CMTo’s adaptation plan now includes revised heat 
emergency protocols, climate-resilient infrastructure investments, 
and a focus on enhancing public awareness of climate risks.

To maximize the utility of DISTENDER’s climate projections, 
stakeholders should consider the following implementation 

strategies: a) Incorporate climate projections into land-use plan
ning, zoning regulations, and disaster preparedness programs in 
local government and municipalities; b) enable water manage
ment authorities to develop integrated water resource manage
ment plans using projected precipitation variability data; support 
urban planners and architects in designing climate-adaptive 
infrastructure and buildings to withstand future climatic condi
tions; c) training energy sector technicians to utilize wind and 
solar projections to optimize renewable energy investments; d) 
supporting agricultural policy makers in adjusting policies to 
encourage climate-smart agricultural practices and sustainable 
water use.

Therefore, the DISTENDER project bridges the gap between global 
climate modeling and localized adaptation needs, providing 
actionable climate intelligence for multiple sectors. By integrating 
these high-resolution projections into decision-making frame
works, stakeholders can enhance resilience against climate change 
impacts and develop sustainable adaptation strategies tailored to 
specific regional challenges. As climate conditions continue to 
evolve, continued refinement and expansion of downscaling 
methodologies will further improve the accuracy and applicability 
of climate services, reinforcing the ability of societies to mitigate 
and adapt to climate risks effectively.

1. Introduction

One of the main obstacles when studying climate-related risks is that 
Earth System Models (ESM) have a coarse-resolution grid which is un
able to capture local phenomena playing a very important role in the 
regional climatic conditions, particularly for the occurrence of natural 
hazards and their impacts. For these reasons, it is essential that future 
climate projections take better into account the peculiarities of each area 
in order to understand future climate-related risk more reliably.

In 1996 World Climate Research Programme (WCRP) initiated a 
project to assess and compare global coupled climate model experi
ments, popularly known as Coupled Model Intercomparison Project 
(CMIP). The project completed five phases until 2014, with tremendous 
success in providing multi-model output to climate researchers and users 
internationally. It has thus turned out to be a cornerstone of global 
climate change evaluations.

The successor phase six (CMIP6) of the project began in 2016 to 
sustain the progress made in understanding climate change and associ
ated evolution with updated climate models. CMIP6 is visioned to sup
port WCRP grand science challenges by focusing on three key scientific 
questions: 1) What is the earth system’s response to forcing? 2)What are 
the sources of systematic climate model biases and their impact? 3) How 
can future changes in the earth’s climate be assessed involving intricate 
internal variability and predictability?

These objectives are elaborated through 21 sub-projects known as 
MIPs, for example, aerosol chemistry, carbon cycles, radiative forcing, 
volcanic eruptions, ocean, land surface, ice sheets, monsoons, paleo
climate, geoengineering, and so forth. CMIP6 was planned initially to 
incorporate runs from 100 climate models generated at 49 modelling 
groups, and as of 2020, results from nearly 40 models have been pub
lished, highlighting significant improvements over phase five models. 
The historical simulations are available for 1850–2014, whereas future 
projections are from 2014 onwards. However, Climate scientists can use 
a few initial years of projection simulations for present-day climate 
assessment where historical runs are closely connected to future pro
jections (Eyring et al., 2016).

The future projections are based on the new shared socioeconomic 
pathways (SSPs) framework given by the energy modelling community 
in contribution to IPCC AR6. Ih this, an integrated approach is attempted 
to produce scenarios from the combination of existing representative 
concentration pathways for climate projections, socioeconomic consid
erations, and climate policies. CMIP6 selects a number of SSPs for 
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climate model run distributed among two tiers. In particular, Tier 1 was 
selected in this study because it corresponds to the core experimental set 
of the IPCC AR6, consisting of four socioeconomic pathways: SSP5-8.5, 
SSP3-7.0, SSP2-4.5, and SSP1-2.6 (Cos et al., 2022).

Further, to provide adequate climate information at a local scale, it is 
necessary to apply a suitable downscaling process based on either sta
tistical (from now on, SDS) or dynamical (from now on, DDS) approach 
on very high resolution (Ribalaygua et al., 2013, Monjo et al., 2016, 
IPCC, 2021). For instance, Med-CORDEX (Somot et al., 2018) provides 
downscaled CMIP5 and CMIP6 climate scenarios with 12 km grid- 
spacing. This is still coarse to the grid-spacing of 3 km and better tar
geted in the project DevelopIng STratEgies by integrating mitigatioN, 
aDaptation and participation to climate changE Risks (DISTENDER) 
project (San Jose et al., 2024). Available km-scale DDS products as 
produced in, for example, Copolla et al. (2020) or Ban et al. (2021) cover 
limited domains only because of computational costs. On the other 
hand, SDS efforts were performed in the Chelsa project (Brun et al., 
2022) and Copernicus-C3S (2020, 2022). However, there exists some 
remarkable differences among the different approaches considered. For 
example, statistical approaches show two main disadvantages compared 
to DDS (Ribalaygua et al., 2013): (1) they have a strong dependency on 
historical observations and thus there may be a possible problem of non- 
stationarity in the relationships between predictors and predictands 
when weak physical linkages are used; (2) they can present spatial or 
inter-variable inconsistencies due to independent simulations for each 
variable and/or point.

On the other hand, the main advantages of the statistical approaches 
are four summarised in two points (Table 1). The first (A) is the low 
computational cost, which allows the downscaling of a large number of 
ESM outputs and greenhouse gas emission scenarios in order to quantify 
uncertainties, but more human resources are required. The second (B) is 
that specific information is provided for the same observed reference 
data (reanalysis grid point or observatories), and they provide more 
details on the probability distribution tails (extremes) and other 
microclimatic features. The local detail used in SDS is relevant as the 
same future climate may bring changes with respect to the current 
climate which could be quite different for points which are a few km 
apart.

DDS can be computationally expensive, but it is based on physical 
principles representing the actual atmospheric and climatic conditions 
and is more suitable for studying climate change than the statistical 
approaches relying on past climate relationships.

On the other hand, statistical approaches for observatories have the 
advantage of using real data to better simulate all probability distribu
tions (including heavy-tailed ones). For the particular characteristics of 

the statistical approaches used in DISTENDER, the advantages are the 
following: (1) predictors selection is based on theoretical considerations, 
trying to reflect the physical linkages between predictors and pre
dictands, which to some extent reduces the stationarity problem; (2) it 
operates at the maximum spatial and temporal resolution offered by 
ESMs; (3) it considers the full range of data variability; and (4) it per
forms linear analysis on the hourly basis of physical forcing from 
topographic and land-use features after an analogue stratification, 
which reduces the non-linearity of the relationships between predictors 
and predictands. However, similar to the choice of the specific dynam
ical downscaling model selected, there exists also an uncertainty source 
that is strictly related to the adopted statistical methodology and the 
calibration period used for training.

This paper is structured in three main sections: (2) Climate data 
sources, including the reference reanalysis and Earth System Models; (3) 
Downscaling techniques, where both statistical and dynamical ap
proaches are described; and (4) Preliminary results to advance early 
results of both experiments.

2. Climate data

2.1. Reference climate data

For statistical downscaling, we collected reanalysis datasets from the 
European Centre for Medium-Range Weather Forecasts (ECMWF): ERA5 
(atmospheric) and primarily ERA5-Land (surface), which were used as 
“observed references” to correct the probability distributions of the 
CMIP6 climate models (Sect. 3.1.3.1). These datasets were selected for 
several key reasons: 1) They provide data for all the climate variables 
required in the statistical downscaling; 2) As ECMWF products, they 
provide superior data quality compared to other reanalyses, especially 
within Europe; 3) They represent the latest global reanalysis versions, 
offering improved spatial and temporal resolution over previous itera
tions; 4) They are freely accessible via the Copernicus Climate Change 
Service. Although a Copernicus regional reanalysis for Europe (CERRA; 
Ridal et al., 2024) was available, it did not fully cover our initial 
modeling domain for progressive nested dynamical downscaling.

ERA5-Land is a surface-specific dataset, focused exclusively on 
terrestrial regions, with data available for up to 50 variables. It features 
a global grid with a native resolution of 9 km × 9 km (Copernicus-C3S, 
2024), regridded to an experimental resolution of 0.073◦ × 0.073◦ (our 
selection) and a standard resolution of 0.1◦ × 0.1◦. Its vertical coverage 
extends from 2 m above the surface down to a depth of 289 cm, struc
tured into four levels corresponding to the ECMWF surface model. The 
dataset provides hourly data from January 1951 to the present, with 
monthly updates, though data availability typically lags by around three 
months.

ERA5, ECMWF’s latest atmospheric reanalysis, has been available 
since July 2019 and is currently the most accurate atmospheric rean
alysis dataset. It integrates a vast array of observational data, including 
weather station measurements, atmospheric soundings, satellite obser
vations, and other reanalysis datasets (such as oceanic data), to recon
struct atmospheric and marine conditions at various levels. ERA5 aims 
to reproduce past atmospheric states as accurately as possible. Due to the 
high-quality data requirements, satellite-based information is only 
available post-release. The dataset covers all of Europe with a regular 
spatial resolution of 0.25◦ (approximately 30 km).

2.2. Climate models

Due to limited computational resources available for the sectoral 
modeling of DISTENDER (e.g. air pollution and human health; San Jose 
et al., 2024, Relvas et al., 2025), we needed to select three representative 
CMIP6 climate models from the starting point of ten CMIP6 climate 
models (with subdaily resolution), which were previously downscaled in 
the FIREURISK project for the whole European domain at a 0.073◦

Table 1 
Summary of the main advantages/disadvantages of the SDS and DDS approaches 
and their secondary features linked.

Feature SDS DDS

(1) Historical observations of the studied variables 
are not needed

✘ ✓

Stationary predictors/predictands relationships are 
guaranteed (from 1)

Sometimes ✓

(2) Spatial and inter-variable consistency is 
guaranteed

✘ ✓

No-predetermined experiments of climate sensitivity 
(from 2)

✘ ✓

Few human resources required (from 2) ✘ ✓
Low computational cost / fast production of 

results
✓ ✘

Large multi-method, multi-scenario & multi-model 
ensemble (from A)

✓ ✘

Spatial resolution as fine as possible (e.g. for a 
station)

✓ ✘

Products are mainly unbiased (from B) ✓ ✘
Probability distribution with adequate extreme point 

values (from B)
✓ Sometimes
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spatial resolution (Hetzer et al., 2024). These ten CMIP6 candidates 
were then sorted by “level of climate change” in temperature by 2050: 
(a) low-change level (25 %) corresponds to MPI-ESM1-2-HR; (b) 
medium-change level (50 %) is for EC-EARTH3-Veg; and (c) high- 
change level (75 %) is for the CanESM5 model (Table 2). For the 
adaptation measures, only the medium-change level simulation has 
been considered. Therefore, the main results of this study were focused 
on the model EC-EARTH3-Veg since it represents approximately the 50 
% climate change level.

Consistently, taking into account the limitations posed by compu
tational resources, only EC-EARTH3-Veg simulations were dynamically 
downscaled. The climate data from CMIP6 models is collected and 
archived at Earth System Grid Federation (ESGF) data replication cen
ters and Copernicus. In DDS, the global historical climate simulation and 
future projections were downscaled over the Med-CORDEX domain in 
DDS, and over a grid covering Europe (between latitudes 29◦N and 56◦N 
and longitudes between 12◦W and 43◦E) for SDS.

DISTENDER defined 14 domains to model climate variables in the 
five Core Case Studies. For operational reasons, only 11 domain areas 
were finally selected from these to produce both hourly and daily 
climate scenarios, while the three other (larger) domains were just for 
daily products (Appendix A, Table A1). The total dataset produced at an 
hourly timescale consisted of 19 variables (in five levels) per three 
CMIP6 models with five simulations (historical + four SSP projections) 
with 34 or 36 years per each one (Appendix A, Table A2). The high 
temporal and spatial resolution (up to one hour and 100 m) combined 
with the large number of variables made it necessary to divide the 
generated information into year-range files of approximately 100 MB, 
which includes all the variables of each vertical level to facilitate nu
merical computing. In total, this amounts to 111,606 files summing 
977,668,560 hourly spatial fields with an average of 1068 points per 
domain. The three domains considered for daily scales amount to 52,866 
files with 19,296,090 daily fields (Appendix A, Table A3). Therefore, 
996,964,650 spatial fields were produced occupying approx. 16 TB plus 
intermediate 14 TB datasets.

As a reference of the past climate necessary for the statistical 
downscaling, the global reanalyses ERA5 (for atmospheric variables) 
and ERA5-Land (surface variables) were selected. They are the latest 
reanalysis datasets from the European Centre for Medium-Range 
Weather Forecasts (ECMWF), which offer enhanced spatial and tempo
ral resolutions compared to previous versions. These were selected 
because they cover the geographical area pertinent to the DISTENDER 
project and since their simulations are recognized as among the most 
reliable available (Copernicus-C3S, 2024).

3. Downscaling techniques

3.1. Statistical approaches

3.1.1. General description of the three stages
To date, there is no climate data publicly available at km- scale, < 4 

km, over Europe under future scenarios either by dynamical or statistical 
downscale approaches. At the beginning of the project, downscaling of 
CMIP6 projections was not available yet for Europe (Euro-CORDEX 
2022) and they typically provide data at regional scale, i.,e 10–12 km, 
while DISTENDER require climate data on local scale. For statistical 
downscaling, previous products did not provide hourly resolution for the 
climate projections (e.g. the Chelsa project, Brun et al., 2022). Other 

daily products were generated only after the definition of the DIS
TENDER products (e.g. Copernicus-C3S, 2022).

The statistical downscaling method used in DISTENDER combine 
well-known techniques, widely implemented in previous international 
projects such as STARDEX (2001–2004), RESCCUE (2016–2020), 
ECCLIPSE (2019–2022), CRISI-ADAPT2 (2019–2022) and FIREURISK 
(2021–2025) (Ribalaygua et al., 2013; Monjo et al., 2021, Monjo et al., 
2023; Torres et al., 2020; Hetzer et al., 2024). The method consists of 
three stages (Fig. 1): (1) Parametric quantile mapping to obtain the same 
spatial resolution that the reanalysis at a daily scale, (b) Hourly time 
scaling based on analogy by spatial patterns and a transference of daily 
extremes to hourly curves from the most similar day in the reanalysis, 
and (c) Geostatistical downscaling hour-by-hour applied to the spatial 
fields. The reference time period used in SDS was the 1981–2014 period, 
bounded by the last year of the Historical experiments (1951–2014) and 
the starting of most observed data (about 1980).

3.1.2. First stage: parametric quantile mapping at the reanalysis resolution

3.1.2.1. Approach description. In DISTENDER, past and future climate 
simulations are generated using a downscaling technique based on 
transfer functions, specifically parametric quantile–quantile mapping 
(Benestad, 2010; Monjo et al., 2014, Monjo et al., 2023), with ERA5- 
Land as the reference dataset (approximately 8 km spatial resolution). 
This method is applied systematically to all climate variables, time se
ries, and projections (10 climate models × 4 SSPs, when available) using 
a two-step process: 

● First, for a given historical experiment, each daily climate variable is 
downscaled to the corresponding ERA5-Land reference grid point. 
This is achieved by obtaining the Empirical Cumulative Distribution 
Function (ECDF) of the reanalysis data, in our common reference 
time period (1981–2014), and comparing with that of the historical 
experiment from each climate model, which has been previously 
bilinearly interpolated. This comparison allows for the derivation of 
a quantile–quantile mapping, which is then used to fit parametric 
functions. In our approach, five-parameter polynomial curves (y(x) 
= a0 + a1x + … + a4x4) are selected to optimize computational ef
ficiency, as they require less processing time compared to the 
exponential distributions proposed by Monjo et al. (2014, 2016).

● In the final step, these parametric functions are applied to correct the 
SSP-RCP projections at a daily scale over the entire time series, 
without differentiation by month or season. The resulting down
scaled projections are generated for a grid encompassing all Euro
pean countries, maintaining the same spatial resolution as ERA5- 
Land.

The selection of transfer functions depends on the statistical char
acteristics of each climate variable. If a variable follows a smoother 
distribution (e.g., linear uniform or Gaussian, as seen in temperature and 
humidity), the transfer function is based on increments (f): 

f : S(ERA5)→S(ERA5) − S(HIST)

RES = MOD+ f(MOD)

where S represents the value-sorting function. Conversely, if the variable 
follows an exponential-type distribution (e.g., log-normal, Weibull, or 
gamma; see Fig. 2), the function is fitted using multiplicative factors (g) 

Table 2 
Information about the three CMIP6 climate models selected for DISTENDER.

CMIP6 Model Climate Change level AGM horiz. resolution Responsible centre Reference

CanESM5 Upper (75 %) 2,812◦ x 2,790◦ Canadian Centre for Climate Modelling & Analysis Swart et al. (2019)
EC-EARTH3-Veg Medium (50 %) 0,703◦ x 0,702◦ EC-EARTH Consortium Döscher et al. (2022)
MPI-ESM1-2-HR Lower (25 %) 0,938◦ x 0,935◦ Max-Planck Institute for Meteorology (MPI-M) Von Storch et al. (2017)
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derived from the comparison of target quantile values (from HIST) with 
their corresponding reference quantiles (from logarithmic values of 
ERA5): 

g : S(log(ERA5))→S(ERA5)/S(HIST), for ERA5 > 0 and HIST > 0 

RES = MOD*g(MOD)

where RES is the resulting (daily) climate scenarios with the desired 
spatial resolution, and MOD is the merge of historical (HIST) and pro
jections (PROJ). This implies that extreme values—when MOD falls 
outside the distribution tails of HIST—are adjusted using the same 
increment (f) or factor (g) as those derived from the empirical tails of the 
training sample (HIST). This approach can be directly applied to clas
sical scalar variables such as temperature, precipitation, humidity, and 
pressure, whether they follow smooth or exponential distributions. The 
method utilizes polynomial fits of up to the 6th degree, applied to either 
linear or logarithmic factors. Since climate change leads to values 
extending beyond historical distribution tails, these out-of-range values 
are corrected using the final truncated factor from the tail mapping (f or 
g).

However, some variables required additional procedures (Table 2). 
This approach applies to vectorial variables (wind) and flux variables (e. 
g., short- and long-wave downward radiation). Finally, additionally to 
the annual and seasonal bias, a Kolmogorov-Smirnov test (Sekhon, 
2010) was applied to analyse the model performance.

3.1.2.2. Approach motivation, advantages and limitations. The para
metric quantile mapping approach was chosen for its balance between 
statistical robustness, flexibility across variables, and computational 
efficiency over large datasets, as it produced good results in the Cost 
VALUE comparative (Gutiérrez et al., 2018). By explicitly fitting transfer 
functions to match the cumulative distribution functions of model out
puts to reanalysis data, it ensures correction of systematic biases not 
only in means but in higher quantiles, which is especially important for 
extreme events (Monjo et al., 2014, 2016, Monjo et al., 2023).

The parametric form (polynomial curves) reduces storage and 
computational demands compared to non-parametric empirical quantile 
mapping, which is essential for handling multi-model, multi-scenario 
daily projections over Europe. Moreover, by distinguishing between 
additive and multiplicative correction schemes depending on variable 

Fig. 1. Summary of the main three stages considered in downscaling of the climate model outputs for a particular core case study (e.g., Città Metropolitana di Torino, 
CMTo): (1) The first stage is common for all the DISTENDER domains and is based on a parametric quantile mapping applied at the same spatial resolution that the 
reference ERA5-Land reanalysis. (2) The second stage consists of an analogy and a transference of curves: The analogue stratification (e.g., Euclidean distance of 
relative spatial patterns) serves to find the most similar day for each targeted day by comparing maximum/minimum daily value of the reference reanalysis and the 
ESM fields. Then a transference function is applied to force the reference hourly curve to the maximum/minimum value of the targeted day. (3) The final stage is a 
classical geostatistical downscaling by Akaike Information Criterion (AIC)-based backward stepwise regression model. In our case, the used predictors were topo
graphic variables calculated in a Digital Terrain Model (elevation, distance to the seas), albedo to represent ‘grey areas’, Normalized Difference Vegetation Index 
(NDVI) to represent ‘green areas’ and Normalized Difference + Water Index (NDWI) to represent ‘blue areas’, selected as three land-cover dimensions. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Example of transfer functions fitted for empirical quantile-mapping 
values of: a) gaussian variables (temperature) and b) exponential-type vari
ables (precipitation). This example corresponds to the historical exponential 
data (HIST) from a grid point of Austria (47.27◦N, 11.39◦E) for EC-EARTH3- 
Veg compared to the closest grid point of the ERA5 reanalysis.
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distribution (smooth vs. exponential), the method accommodates a wide 
range of physical variables while preserving their statistical character
istics. However, the approach also has limitations. It assumes stationary 
bias structures between historical and future periods, which may not 
fully hold under strong climate change. It also relies on the quality and 
representativeness of the reanalysis reference data (ERA5-Land), which 
can carry its own uncertainties. Finally, the approach can be less 
effective in correcting spatial or temporal dependencies, as it operates 
point-wise on the grid, although wind components are treated jointly to 
address directional dependencies.

3.1.3. Second stage: analogue-based approach for hourly timescale

3.1.3.1. Selected method: Gridded dataset as a reference. CMIP6 model 
outputs do not have hourly data but they have 6-hourly and daily fields, 
so it is not possible to directly apply a quantile mapping at hourly scale 
here. Therefore, to obtain gridded products for all the DISTENDER do
mains, a second stage used the daily outouts of the first stage (Sec, 3.1.2) 
and the hourly fields from ERA5 and ERA5-Land reanalyses as refer
ences, following three steps:

Analogue stratification: A stratification was performed by using a 
Euclidean distance of relative spatial patterns (root of standardized 
square differences). This geometrical technique allows to order all the 
reference days (in the past) of the reanalyses according to their simi
larity with each ‘targeted day’. Specifically, we found the most similar 
day for each targeted day (from ESM fields) by comparing relative 
spatial patterns of daily-aggregated values. For instance, maximum and 
minimum temperatures were selected to describe the atmospheric 
configuration (clear-sky or cloudy-day patterns) to capture typical 
hourly curves for each configuration and region. To ensure physical 
consistency among the different variables, the same analogous day was 
selected for all the variables simulated.

Parametric daily-to-hourly scaling: For each downscaled climate pro
jection (to the ERA5-Land grid) and for all climate variables, every 
targeted daily field was scaled to an hourly resolution by using the 
reference features of the ERA5-Land. Hence, the hourly curve of the 
climate variables (e.g., temperature, humidity, and wind) was obtained 
from the most similar day (of ERA-Land reanalysis) to the target day. A 
parametric transfer function is then applied between the targeted daily 
field (e.g. maximum and minimum daily values) to the hourly fields of 
the most similar day in the past.

Filtering of jumps: Since every day is simulated separately, possible 
jumps may occur, which are smoothed by jointly filtering the three last 
hours of each day and the first three hours of the following day. The used 
filter is a spline-weighting function between the average trend in these 
six hours and their original values, applying the higher smoothing to the 
last-first hours (23 h and 00 h).

3.1.3.2. Alternative method: point observations as a reference. Similarly 
to the dynamical approaches, statistical grid-based methods have 
coherent and robust spatial distributions, but they can underestimate 
extreme values (distribution tails) of some climate variables, especially 
for precipitation and wind. To complement this issue, an alternative to 
the DISTENDER approach is generating climate scenarios at a local scale 
by using statistics of direct observations, measured in a point (e.g. 
weather station, rain gauge, hygrometer and thermometer, among 
others) and then applying point-observation-based bias adjustment or 
perfect prognosis approaches.

If there is a sufficient station network density, statistical downscaling 
of ESM translates general atmospheric configurations from large-scale 
predictor fields (of ESM simulations) to local climate information ob
tained from surface point observations. The recommended method is a 
two-step analogue-transference approach which combines an analogue 
stratification and parametric transference functions. This method has 
been validated in international comparisons for climate models and 

reanalysis (Ribalaygua et al., 2013; Gutiérrez et al., 2018). The outputs 
of this spatial downscaling are time series representing the climate of the 
reference points, the same points as the observatories or the reanalysis 
grid points used for training the method.

3.1.4. Third stage: geostatistical downscaling to the final spatial scales
At this stage, a topography-based multi-linear interpolation was applied 

to the 8 km-resolution downscaled model outputs (trained with the time 
series from the ERA5-Land reanalysis) to generate a finer resolution. 
Particularly, for each climate variable simulated by the CMIP6 models, 
the last stage is applied according to three steps: 

1) For all variables (Table 2) and each projected day (with 
0.073◦×0.073◦ resolution, ~8 km), a geostatistical interpolation 
allowed to obtain a high-resolution grid by using AIC-based stepwise 
multi-linear regression (Venables and Ripley, 2002) with geograph
ical variables (altitude, latitude, longitude, distance to the Atlantic 
Ocean and Mediterranean Sea) and Corine-2018 (EEA, 2020) land- 
cover variables (albedo, NDVI, NDWI; Table 3) used as predictors.

Table 3 
Daily variables generated by statistical downscaling and the specific procedures.

Type Variable Specific procedures

2 m air 
temperature 
(◦C)

TMax: Maximum 
temperature 
TMin: Minimum 
temperature

These variables are directly obtained 
using parametric quantile mapping, 
assuming a smooth distribution. 
Additionally, mean temperature is 
defined as: TMean = (TMax + TMin)/2

2 m air 
humidity 
(%) 

HRMax: Maximum 
relative humidity 
HRMin: Minimum 
relative humidity

It is directly corrected by parametric 
quantile mapping (smooth distribution). 
A post-process was done to limit values 
within the physically meaningful range 
of 0 % to 100 %.

surface 
precipitation 
(mm)

tpr: Total daily (24- 
h) precipitation

This variable is directly generated using 
parametric quantile mapping, assuming 
an exponential probability function. No 
additional adjustments are required 
because the mathematical process does 
not produce negative values.

10 m 
Wind 
(m/s)

W: Mean wind 
module. 
U, V: Wind 
components 

The wind module (W), defined as W =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
U2 + V2

√
, is directly obtained as an 

exponential variable. However, since the 
U and V components are not entirely 
independent —due to certain wind 
directions being more frequent as a 
result of topographical influences—, it is 
essential to account for this dependency 
by considering: 
- Mutual dependent contribution 〈U〉 =

F(〈V〉), that is the “predictable 
contribution” of U as a function of V 
and vice versa, where F is a linear 
function fitted.

- Residual contributions, which are 
[U]:= U − 〈U〉 and [V]:= V − 〈V〉. 
Therefore, three variables are 
corrected as smooth distributions: [U], 
[V], and 〈X〉 (representing either 〈U〉 or 
〈V〉). The corrected wind components 
are then obtained as V′=[V]′+〈V〉 and 
U′=[U] + F(〈V′〉). Finally, the 
corrected components U′ and V′ are 
normalized to derive the wind 
direction θ, and the final wind 
components are computed as U’’ = W’ 
cos θ and V’’ = W’ sin θ

Solar radiation 
(W⋅m− 2)

LWD: Long-wave 
down radiation 
SWD: Short-wave 
down radiation

The transfer function is applied to the 
total solar radiation from ERA5-Land. 
Subsequently, long-wave and short-wave 
radiation components are separated 
based on the original ratio provided by 
the climate model.
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2) Similarly, for each day, residual errors of the AIC-based stepwise 
regression are interpolated from the original grid (0.073◦×0.073◦) to 
the final grid (e.g., 1000 m × 1000 m or 30 m × 30 m) by using a 
simple bilinear model (using latitude and longitude as predictors).

3) Finally, the projected value for each day is obtained by adding the 
result of 1) and 2), obtaining climate scenarios in the high-resolution 
grid at an hourly timescale (Fig. 3).

Fig. 3. Scheme of the three stages considered in the statistical downscaling of DISTENDER and the corresponding three products marked in light violet: (1) Daily 
products for Europe at the same spatial resolution as the ERA5-Land reanalysis: (2) Hourly products obtained by transferring of the hourly curve found in the most 
similar day (reanalysis) to each targeted day (ESM fields); (3) Final product with the finest spatial and temporal resolutions (achieved by geostatistical downscaling 
hour by hour). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Dynamical downscaling

3.2.1. General description
Dynamical downscaling is an approach to obtain high-resolution 

climate simulations using regional climate models (RCMs) or limited 
area models running with ESM outputs as lateral boundary forcing 
(Trzaska and Schnarr, 2014). Since it is based on the physical laws of 
fluid mechanics and thermodynamics, dynamical downscaling has su
premacy to hold true even in changing climate conditions. However, the 
limitation is that it is computationally more expensive than statistical 
downscaling (Tang et al., 2016).

State-of-art dynamical downscaling efforts encompass European 
initiatives such as Med-CORDEX, EURO-CORDEX, and the European 
Climate Prediction (EUCP) system project. Dynamical downscaling of 
CMIP5 is available from these projects; however, the projections of the 
most recent generation of intercomparison project, i.e. CMIP6, were 
under completion in dynamical downscaling at the beginning of this 
project (Dyrrdal et al., 2018). In addition, when it becomes available, it 
will provide information at regional scale, while DISTENDER aims for 
climate information at local scale, i.e., higher resolution.

Therefore, in DISTENDER, dynamical downscaling (DDS) of the 
CMIP6 EC-Earth3-Veg over Med-CORDEX domain (WCRP MedCORDEX, 
http://www.medcordex.eu) at km-scale (also known as convection- 
permitting, i.e. grid-spacing < 4 km) was performed. The decided 
spatial resolution for DDS is 3.9 km which is expected to sufficiently 
resolve important processes to produce climate information at local 
scale for the DISTENDER core case studies and was just computationally 
afforable. The climate model and simulation design are described in the 
following sub-sections.

3.2.2. Model features
The ICOsahedral Nonhydrostatic (ICON) (Zängl et al. (2015, 2022) 

model is selected for dynamical downscaling within the DISTENDER 
project. ICON is an outcome of a collaboration between Deutscher 
Wetterdienst (DWD) and Max Planck Institute for Meteorology (MPI-M). 
It can be used for both numerical weather prediction and climate sim
ulations. As the name suggests, ICON’s numerical grid is based on the 
icosahedron, i.e., the spatial area is divided into a triangular mesh and 
has the terrain-following vertical coordinate. The model dynamics in
volves fluid motion equations integrated forward in time. Additional key 
components of ICON are numerical advection of atmospheric quantities 
like cloud water and humidity, and parameterizations of unresolved 
physical processes. The temporal integration in ICON utilizes a combi
nation of the Matsuno scheme and the Heun scheme (Prill et al., 2022).

ICON for climate simulations can be applied in either a global set-up 
or a limited-area set-up driven by both global reanalyses and global 
climate projections. Here, we use the limited-area model configuration 
of ICON-CLM version 2.6.5, which is actively developed in the CLM- 
Community (http://www.clm-community.eu) and is a successor of 
COSMO-CLM (successfully applied before and still used in many EU 
projects like ENSEMBLES, BRAHMATWINN, SOCLIMPACT, EUCP). The 
regional domain selected for dynamical downscaling is alike CORDEX 
region 12 (i.e., Mediterranean basin, Med-CORDEX, https://www.med 
cordex.eu), as shown in Fig. 4. It allows producing the required mete
orological variables, especially for the core-case studies sub-domains. In 
addition to the suitable configuration of ICON-CLM to our domain, we 
used TERRA-URB land-surface scheme (Wouters et al., 2017) due to its 
more detailed representation of urban and urban change effects.

Due to computational constraints (i.e., computing and storage re
sources), dynamical downscaling simulations in DISTENDER driven by 
only one CMIP6 model, EC-Earth3-Veg, that has medium sensitivity to 
climate change compared MPI-ESM1-2-HR and CanESM5 models.

Further, the temporal coverage of dynamical downscaling simulation 
is 11 years each; the first year is considered as a spin-up period.

Analogous to the statistical downscaling, a historical simulation and 
four SSPs future simulations have been performed (Table 4).Table 5.

A 10-year present simulation by dynamical downscaling (DDS) of 
EC-EARTH3-Veg (spin-up 2010, historical 2011–2014, SSP126 
2015–2020) was primarily analysed for precipitation and temperature 
bias in the seasonal and annual mean. For a better bias assessment and 
adjustment of the DDS outputs, gridded observational data for the Eu
ropean region (E-OBS, Cornes et al 2018) is used along with the provided 
boundary forcing (EC-EARTH3-Veg).

3.2.3. Post-processing
The output of the DDS simulations have been post-processed to fit the 

defined domains of DISTENDER core case studies as well as the spatial 
and temporal resolutions (Table A1). Post-processing steps also included 
bias adjustment for the near-surface temperature and precipitation to 
the ICON-CLM output (Fig. 5). It is well known that regional model 
simulations suffer from two types of biases 1) inherited from driving 
ESM and 2) due to model physics. These biases have the potential to 
further influence the performance of impact models running on input 
from regional climate models (Seaby et al., 2013). However, different 
bias-adjustment techniques can be employed to meteorological vari
ables, especially precipitation and temperature, to improve the quality 
of climate data produced by RCMs.

We used the gridded observational E-OBS (Cornes et al 2018) data as 
a reference for precipitation bias adjustment. Further, due to data 
scarcity in the southern Mediterranean by E-OBS, the IMREG satellite 
(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07/summary) 
has been used to fill in missing reference data. E-OBS is an ensemble 
dataset available on a 0.1 degree regular grid for daily precipitation 
sum, among other climate variables. Version 27.0 has been used here. 
For temperature, we used instead the CRU TS dataset (Harris et al., 
2020), version 4.07 https://crudata.uea.ac.uk/cru/data/hrg/) as a 
reference for bias adjustment, The reason is in known E-OBS infrequent 
issues in representing correct daily maximum and minimum tempera
tures (https://surfobs.climate.copernicus.eu/userguidance/known_iss 
ues_eobs.php). The CRU TS dataset is a gridded observational-based 
dataset over land at 0.5◦x0.5◦ grid-space, and monthly time resolu
tion. To be able to apply bias-adjustment over sea, we used 2-meter 
temperature over sea from ERA5 data (Hersbach et al., 2020).

The casuistic between SDS and DDS is distinct mainly due to the use 

Fig. 4. The model domain selected for dynamical downscaling using 
ICON-CLM.
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of ERA5 and ERA5-Land reanalyses as references for SDS, which mostly 
bias-corrects all the variables at different vertical levels, while DDS 
directly produces physically-consistent fields at all the levels avoiding 
the need of using the reanalysis dataset to obtain all its variables. 
Therefore, by direct result (effect of the training process from the 
reanalysis data), SDS outputs are practically unbiased, so no additional 
procedures are required in contrast to the significant systematic errors in 
temperature and precipitation that are usually obtained from DDS. 
Instead of reanalysis, regular grids of observations (such as E-OBS and 
CRU TS) are more commonly used to correct bias of DDS outputs, except 
for the maritime areas

For the DDS in DISTENDER, we assessed different methods and opted 
for relatively simple, but robust bias-adjustment methods for precipi
tation and temperature, respectively; 

a) Precipitation bias-adjustment. A simple method known as local 
intensity scaling (Schmidli et al., 2006, Dobler and Ahrens, 2008) 
was used to adjust model produced precipitation as per observation 
in the historical period. The simulated precipitation was adjusted at 
daily scale and the coarser spatial resolution of the observational 
reference dataset (i.e., 0.1◦). The coarsened simulated data is 
adjusted in two main steps: The first step is to adjust the frequency of 

wet days (i.e., days with observed precipitation ≥ 0.1 mm/day). This 
is achieved by adjusting the threshold of the simulated wet days (the 
model typically simulates too many wet days in Europe which leads 
to spatially varying thresholds larger than 0.1 mm/day). The second 
step is a multiplicative scaling of the precipitation intensities with 
the ratio of the means of simulated and observed wet day intensities. 
The scaling factors vary in space around the value 1. After coarse- 

Table 4 
Assignment between ten simplified land cover types and three physical predictors for a geostatistical downscaling (albedo, NDVI and NDWI). As input, we used 44 
Corine-2018 categories (EEA 2020).

Simplified land cover type Gathering of land covers Albedo NDVI NDWI

urban 1,2,3,4,5,6,7,8,9 0.2 0.08 0.3
green urban 10,11 0.15 0.75 0.6
arable lands 12,13,14,15,16,17,18,19,20,21 0.3 0.3 0.45
forest agroforest 22,23,24,25 0.13 0.8 0.7
grasslands moors shrub 26,27,28,29 0.3 0.3 0.55
sands bare rocks 30,31,32 0.4 0.4 0.15
burnt areas 33 0.05 0.05 0.2
glaciers snow 34 0.7 0.7 0.15
marshes peat bogs 35,36,37 0.15 0.2 0.6
water courses & lagoons 38,39,40,41,42,43,44 0.1 0.05 0.9
Corine-2018 categories: 1 continuous_urban_fabric 23 broad_leaved_forest
2 discontinuous_urban_fabric 24 coniferous_forest
3 industrial_or_commercial_units 25 mixed_forest
4 road_&railnetworks_&associated_land 26 natural_grasslands
5 port_areas 27 moors_and_heathland
6 airports 28 sclerophyllous_vegetation
7 mineral_extraction_sites 29 transitional_woodland_shrub
8 dump_sites 30 beaches_dunes_sands
9 construction_sites 31 bare_rocks
10 green_urban_areas 32 sparsely_vegetated_areas
11 sport_and_leisure_facilities 33 burnt_areas
12 non_irrigated_arable_land 34 glaciers_and_perpetual_snow
13 permanently_irrigated_land 35 inland_marshes
14 rice_fields 36 peat_bogs
15 vineyards 37 salt_marshes
16 fruit_trees_and_berry_plantations 38 salines
17 olive_groves 39 intertidal_flats
18 pastures 40 water_courses
19 annual_crops_and_permanent_crops 41 water_bodies
20 complex_cultivation_patterns 42 coastal_lagoons
21 land_principally_occupied_by_agriculture_with_significant_natural_areas 43 estuaries
22 agro_forestry_areas 44 sea_and_ocean.

Table 5 
Simulation plan for Dynamical-downscaling set-up within DISTENDER.

Simulation No. Period Forcing/LBCs

1
Historical simulation 
(1-year spin up, 2011–2020)

​
EC-EARTH3-Veg

2. Future Projections 
(1-year spin up, 2041–2050)

EC-EARTH3-Veg/SSP126
EC-EARTH3-Veg/SSP245
EC-EARTH3-Veg/SSP370
EC-EARTH3-Veg/SSP585

Fig. 5. Schematic of Dynamical-Downscaling approach within DISTENDER.
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grid adjustment the fine-grid multiplicative increments are applied 
to the simulated precipitation again. The same adjustment using the 
same wet day thresholds and scaling factors is applied to the future 
period simulation.

b) Temperature bias-adjustment. The applied bias-adjustment for 
temperature is based on correcting daily minimum temperature and 
diurnal temperature range (DTR). Considering DTR in temperature’s 
BA helps maintain physically realistic relationships between 

Fig. 6. Mean values of precipitation (mm) in the 2011–2020 period for the annual period according to E-OBS (top left) and ERA5-Land (top right) and bias (mm) of 
the EC-EARTH3-Veg downscaled with the statistical approach (SDS, middle panels) and dynamical approach (DDS, bottom panels). On the right, the statistical 
downscaling is compared to ERA5-Land since it was the basis for the daily quantile mapping, while the bias adjustment of the dynamical downscaling (DDS BA) was 
performed with E-OBS in Europe. The historical experiment of EC-EARTH3-Veg was extended with the SSP1-2.6 projection to complete the 2011–2020 period in both 
SDS and DDS approaches.
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maximum and minimum temperatures, and is widely used for 
adjusting temperature biases from climate models’ output (Cucchi 
et al., 2022; Lange, 2021). The minimum and maximum tempera
tures in the historical simulation are coarsened to the grid of the 
observational reference (0.5◦, monthly). This allows the determina
tion of an additive minimum temperature bias and a multiplicative 
bias of diurnal temperature range. These coarse-grid biases are 
applied in the adjustment of the model-grid data. The same adjust
ment using the same biases are applied to the future period 
simulation.

Finally, the model data with 3.9 km grid-spacing for all variables 
(including bias-adjusted precipitation and temperature) was interpo
lated to the required spatial resolutions of 9 km and 3 km (Table A1) for 
core-case studies.

4. Results and discussion

4.1. Historical simulation assessment

When SDS is considered for the three climate models, the perfor
mance analysis concluded that the downscaled historical experiment of 
EC-EARTH3-Veg presented the smallest bias for precipitation compared 
to ERA5-Land in the 1981–2014 period (not shown). The annual pre
cipitation distribution passed the KS test at a daily scale for the three 
downscaled climate models. At a seasonal scale, summer is the worst 
simulated period, with July and August systematically failing out the KS 
tests for the downscaled EC-EARTH3-Veg, especially for Guimaraes. 
Finally, spring and winter seasons are adequately simulated by the 
downscaled EC-EARTH3-Veg according to the KS test compared to 
ERA5-Land (p-value > 0.05).

To compare the SDS and DDS skills in the past simulation, the his
torical experiment of the climate models was extended with the SSP1- 
2.6 projection, obtaining a complete common period of 10 years 
(2011–2020). Systematically, the E-OBS reference estimates a lower 
precipitation amount for the mountainous regions than the ERA5-Land 
reanalysis for the 2011–2020 period (Fig. 6 top). With this difference, 
most patterns found in the bias field of DDS and SDS (Fig. 6 left center 
and bottom) can be explained by two reasons. On the one hand, the 
deviation between EOBS and ERA5-land is consistent with SDS bias to
ward EOBS due to the SDS dependence on ERA5-land, and on the other 
hand, the parameters of EC-EARTH3-Veg (IFS cycle 36r4) are partially 
shared with those ones used in the ECMWF simulations of the ERA5 and 
ERA5-Land (IFS cycle 45r1, https://confluence.ecmwf. 
int/display/CKB/ERA5-Land). Therefore, SDS generally displays 
higher relative biases in precipitation with respect to E-OBS (up to + 50 
% in Eastern Europe) than when it is compared to ERA5-Land (smaller 
than ± 20 %, Fig. 6). This overestimation contrasts with DDS, which 
maintains reduced biases about ± 10 % across large areas of Northern 
and Eastern Europe, reflecting a more constrained adjustment. Consis
tently with the above mentioned, a common underestimation is found 
for some areas (e.g. for Southern Portugal and Eastern Italy) when both 
methods are compared to E-OBS. However, for their corresponding bias- 
adjustment (BA) basis (E-OBS in DDS-BA and ERA5-Land for SDS), they 
show more consistent results, which fluctuates typically around − 10 % 
to + 10 % depending on the region (Fig. 6 right center and bottom).

Concerning mean temperature, SDS of EC-EARTH3-Veg outputs 
showed negative bias downs to − 2◦C in Northeast Europe. The statistical 
downscaling product of the CanESM5 model is an intermediate case, 
with low bias during winter (slightly positive up to 1 ◦C in Central 
Europe) and negative bias during summer, especially in Spain (− 1◦C).

The simulated near-surface (2-meters) temperature from DDS was 
also compared to observations (CRU). As in precipitation, temperature 
output also suffers from biases inherited from boundary forcing. The raw 
EC-EARTH3-Veg and its corresponding DDS present a warm bias ten
dency in central and east-central parts of Europe. This bias is more 

noticeable during summer in EC-EARTH3-Veg SDS simulation, whereas 
the bias magnitude is less for its DDS result. Also, some southern and 
central orographic regions simulated by SDS have a cold bias during 
winter. In any case, the seasonal bias is not statistically significant for 
the 10-year historical simulation of the DDS, which was short due to 
computational limitations.

When comparing both downscaling methods with the respective 
reference bases (ERA5-Land for SDS and CRU for DDS BA), the sys
tematic error of SDS is lower than DDS at the elevated regions such as 
the Alps (about 3 or 5 ◦C of bias), which impacts close to the study case 
of the CMTo region. However, it is slightly higher (1 or 2 ◦C) in 
Southeastern Europe and northern British Isles (Fig. 7). A few nuances 
are also found at other regions of interest for DISTENDER, as this is the 
case in the Spanish Central Mountains of the Euraf region.

In summary, there are three main uncertainty sources in the bias 
when comparing SDS and DDS: First of all, they use a different training 
time period, since the limited computational resources of DDS forced it 
to produce a shorter period (2011–2020) than the used for SDS 
(1981–2014). Moreover, SDS is naturally compared to the ERA5-Land 
reanalysis as it has been used to train the SDS procedure in the 
1981–2014 period. For this reason, SDS − ERA5-Land bias is expected to 
be larger in 2011–2020 than in the natural baseline of 1981–2014, but it 
significatively presents less bias than SDS − EOBS. Finally, SDS is not 
exactly unbiased with respect to ERA5-Land even in the 1981–2014 
period because the procedure is based on a parametric quantile mapping 
(no empirical quantile transference). In order to correct climate pro
jections, empirical quantile mapping (i.e. actually unbiased) cannot be 
applied because unobserved values in the future projections are trun
cated to actual observed values (from the past), which invalidates the 
method for climate change analysis. In contrast, the parametric 
approach avoids overfitting by capturing simpler transfer functions be
tween the simulated and the observed CDFs. In particular, the use of 
four-parameter polynomials does not guarantee that the quantile map
ping be unbiased but it avoids overfitting.

4.2. Climate projections

In the climate projections (2041–2050) driven by EC-EARTH3-Veg, 
both DDS BA and SDS agree on certain large-scale patterns, such as an 
increase in precipitation in Northern Europe and a decrease in Southern 
Europe. However, the magnitude of these changes differs. Under all the 
SSP scenarios, for example, both SDS and DDS project precipitation in
creases in Central Europe exceeding + 15 % or + 25 % relative to the 
historical period (2011–2020). Moreover, both methods consistently 
indicate wetter conditions in the Alpine regions but differ in the spatial 
extent of these increases, with DDS BA showing more localized inten
sification for the worst SSP scenarios (Fig. 8). Meanwhile, in Southern 
Europe, particularly over Spain and Italy, DDS projects decreases up to 
− 30 %, whereas SDS suggests a more moderate reduction, around − 15 
% to − 20 %. Despite these differences, a consensual pattern emerges: a 
wetter north and a drier south across Europe, though the intensity and 
spatial variability of changes are notably method-dependent. This 
discrepancy could reflect DDS’s sensitivity to dynamic atmospheric 
processes that would amplify responses (e.g. zonal circulation versus 
cyclogenesis frequency) under high-emission scenarios.

Concerning the temperature projections (Fig. 9), both methods show 
similar paths but some differences can be pointed out, specifically in 
SSP1-2.6. In this scenario the DDS BA method projects a uniform slight 
warming across Europe (+1◦C), whereas the SDS method suggests cooler 
anomalies, particularly in Eastern Europe and the Balkans (down to 
− 2.25 ◦C). For SSP2-4.5, both methods predict a general warming 
(+1.75 ◦C), but the SDS approach depicts more intense (+1.75 ◦C) 
warming in the southwest (North Africa region). On the other hand, the 
SSP3-7.0 scenario shows a slightly lower warming than which can be 
seen in the SSP2-4.5, with a similar warming rate in southern Europe, 
but even with a slight cooling around central Europe, in both DDS BA 
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and SDS. This can be explained because of differences existing within 
each SSP which affect the initialization of the climate models. In this 
case, since the projections end before 2040 these differences can allow 
us to find this paradox in the near-term projections. Moreover, this could 
also be driven by the member used in GCM, so it would be necessary to 
use the ensemble member to reduce the uncertainty of the single 
member dependence. Finally, in the worst-case scenario (SSP5-8.5), 
both methods show substantial warming across Europe (>2.25 ◦C) with 
the DDS presenting a slightly smoother gradients, while SDS emphasizes 
greater warming, specially in the south and eastern areas (Spain, Italy 
and Balkan regions). Nevertheless, in the two methods a smoother 

warming in the Atlantic façade can be expected for this high-emissions 
scenario (France and British Islands with a warming up to + 1.25 ◦C) 
thanks to the temperate effect of the Atlantic Ocean.

As an example of detailed local scenarios for the DISTENDER core 
case studies, future projections of seasonal temperature are shown in 
Fig. 10. Topographic effects on temperature are more perceptible during 
the summer since maximum temperature is sensitive to the elevation 
differences, and the nuances at a high spatial resolution are captured by 
the SDS method. In consistency with previous studies, the summer is also 
the season with more increase in temperature by 2050, up to + 5◦C 
under the SSP5-8.5 scenario. However, a higher multidecadal variability 

Fig. 7. The same as Fig. 9 but for average temperature, while the reference dataset is CRU.
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is visible especially under the SSP3-7.0 scenario, showing a peak of 
warming in the 2031–2040 decade. Spring and Autumn are the seasons 
that less warming (only + 2◦C) will experience in the region under the 
SSP2-4.5 and SSP3-7.0 scenarios, as these projections also show more 
expected precipitation (between + 10 and + 20 %) in CMTo for the 
following decades (not shown). The increase of moisture during Spring 
and Autumn is also related to the increase of temperature in the 

Mediterranean seas, which is expected to produce deeper convective 
systems with increase of the precipitation concentration (Monjo et al., 
2016, Monjo et al., 2023).

4.3. Uncertainty analysis

The annual mean precipitation bias from the raw outputs of EC- 

Fig. 8. Climate projections of mean precipitation obtained from DDS BA (left column) and SDS (right column) methods for the historical period (2011–2020, top 
row) and for the differences between each SSP (2041–2050) and the historical period means (from the second to the fifth row: SSP1-2.6, SSP2-4.5, SSP3-7.0 and 
SSP5-8.5).
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Fig. 9. The same as Fig. 8 but for mean temperature.
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EARTH3-Veg brings about the added values of dynamical downscaling 
in representing spatial variability. An overall reduction in wet bias in the 
northern parts of the domain was found for DDS compared to EC- 
EARTH3-Veg. Also, the precipitation enhancement in orographic re
gions of central Europe in downscaled simulation improved the dry bias 
present in driving ESM.

The discrepancy underlines the limitations of each approach: DDS 
might overemphasize physical processes not well-represented at higher 

resolutions, while SDS risks missing critical dynamical feedbacks, 
potentially affecting model accuracy in regions characterized by com
plex topography or local climatic interactions. For instance, SDS might 
not adequately reflect localized drought intensification seen in obser
vational records, suggesting that neither method fully captures the re
gion’s climatic complexity. These differences highlight critical 
implications for impact studies. Consensual results from both methods is 
especially crucial for water resource management in the Mediterranean 

Fig. 10. Example of detailed scenarios per season and period according to the SDS of EC-EARTH3-Veg for maximum hourly temperature in the study area of 
Metropolitan City of Turin (CMTo) at a 3 km spatial resolution (D1 domain area, Table A1).
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basin, since a method’s mixed over- and underestimations could lead to 
greater uncertainty in hydrological planning.

Concerning temperature simulations, differences between both 
methods are accentuated in the most mountainous regions of Central 
Europe but also in some litoral areas of Southeastern Europe. These 
differences are due to the ability of the methods to capture to a greater or 
lesser extent the characteristics or effects on the temperature variability 
from the elevation or the distance to the sea. For instance, SDS in
corporates a digital elevation model and a field of distance to the see as 
two direct predictors during the bias correction procedure, allowing us 
to reduce the impact of the systematic error in the most geographically 
complex regions.

Therefore, our results provide insights into the strengths of 
combining statistically and dynamically downscaled simulations and 
pave the way for bias-adjustment before using local-scale climate sce
narios for DISTENDER case studies. The detailed biases and projections 
underline the importance of using complementary methods to provide a 
more comprehensive picture of potential climate impacts. By comparing 
the strengths and limitations of DDS and SDS, stakeholders can better 
assess risks and uncertainties associated with future climate scenarios.

5. Conclusions

The DISTENDER project demonstrates the feasibility and benefits of 
integrating cutting-edge statistical and dynamical downscaling methods 
to address the limitations of Earth System Models (ESMs) in producing 
localized climate projections. By employing a novel three-stage statis
tical downscaling process, the project developed hourly climate sce
narios that provide high temporal and spatial resolution. This 
innovation ensures compatibility with observed reference data, im
proves the representation of probability distribution tails (e.g., extreme 
values), and captures microclimatic features that are critical for under
standing local climate risks. For instance, hourly scaling based on 
analogies and geostatistical adjustments allows the fine-tuning of 
climate projections to a resolution of < 10 km across Europe, enabling 
enhanced applicability for urban and regional planning.

The SDS approach showcased strengths in computational efficiency, 
enabling the downscaling of multiple ESMs and emission scenarios to 
quantify uncertainties systematically. However, it also highlighted 
persistent challenges, such as biases in precipitation and temperature 
across regions and seasons. For example, according to the median 
simulation (EC-EARTH3-Veg), negative precipitation biases of up to − 1 
mm/day in summer were noted in southern Europe, while temperature 
biases ranged from − 2◦C in Northeast Europe to + 1◦C in central regions 
during winter. Despite these biases, the Kolmogorov-Smirnov (KS) tests 
confirmed the statistical consistency of daily precipitation and temper
ature distributions for most models and seasons (with p-value > 0.05).

DDS, performed with the ICON model, offered additional insights 
into the spatial and seasonal variability of climate projections. By 
leveraging high-resolution domains (e.g., 3 km for core case studies), it 
successfully improved the representation of complex atmospheric pro
cesses, particularly over orographic regions. This method mitigated 
some of the statistical method’s limitations, such as spatial in
consistencies and dependency on historical relationships. The reduction 
of wet biases in northern Europe and the enhanced depiction of summer 
dry periods in central Europe highlight the added value of dynamical 
approaches, albeit at higher computational costs.

Projections of future climate scenarios under various socioeconomic 
pathways revealed significant potential impacts on precipitation and 
temperature patterns across Europe. For instance, under SSP5-8.5, 
summer precipitation is projected to decrease by up to − 20 % in 
southern Europe, while central and northern regions may experience 
increases of + 10 % to + 15 %. Temperature projections indicate 

pronounced warming of up to + 5◦C during summer in southern Europe, 
with smaller increases of + 2◦C to + 3◦C in northern areas. These pro
jections provide critical insights for assessing climate hazards, such as 
heatwaves, droughts, and increased flood potential, and for developing 
targeted adaptation measures.

The performance of both DDS and SDS are adequate, showing 
consistent projections under different SSP scenarios. When possible, the 
combination of DDS and SDS is desired to measure the impact (sys
tematic errors) from the statistical method choice, although SDS allows 
the production of a large number of ESM simulations due to its higher 
performance in computational cost efficiency. Moreover, it is the first 
time that an European project generates a high temporal (hourly) 
resolution-ensemble, very appropriate for feeding impact models. That 
is, the consistency and reliability of DISTENDER’s scenarios make them 
valuable tools for climate impact assessments and policy planning, 
deriving possible adaptation measures.Their usability extends beyond 
the project’s scope, supporting stakeholders in sectors like agriculture, 
water management, urban planning, and disaster risk reduction. The 
availability of high-resolution hourly data is particularly relevant for 
short-term operational planning and long-term strategic initiatives. 
Additionally, the dataset offers opportunities for interdisciplinary 
research, enabling integration with socio-economic and ecological 
models to evaluate broader climate impacts.

In summary, the DISTENDER project underscores the importance of 
leveraging both SDS and DDS approaches to achieve comprehensive and 
actionable climate projections. While statistical methods offer compu
tational efficiency and extensive ensemble outputs, dynamical ap
proaches provide the spatial and physical accuracy needed for regional 
applications. The combined methodology represents a significant 
advancement in climate modeling, paving the way for more precise, 
localized, and user-focused climate scenarios. Future work should focus 
on refining bias correction techniques, further exploring the integration 
of these approaches, and addressing emerging challenges such as non- 
stationarity and extreme event simulation, at the same time that opti
mizes accuracy and computational efficiency.
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Appendix A:. Description of the DISTENDER climate data

This appendix describes the characteristics of the climate data generated in DISTENDER. Table A1 shows details of the 14 domains defined in 
DISTENDER to model climate variables in the five Core Case Studies, with 11 domain areas at hourly scales and three at a daily scale. Table A2 details 
the total dataset produced at hourly scale, consisting of 19 variables (in five levels) per three CMIP6 models with five simulations (historical + four SSP 
projections) with 34 or 36 years per each one. Similarly, Table 3 described the data produced for the three domains considered for daily scales.

Table A1 
Core Case Study domains in the DISTENDER project. The five Core Case Studies are: (1) Guimaraes; (2) The Metropolitan City of Turin (CMTo: Città Metropolitana di 
Torino); (3) the Hanze University of Applied Sciences (HUAS) that represents the North-east of the Netherlands; (4) the European Agroforestry Federation (Euraf) that 
represents Dehesas (Spain) and Montados (Portugal) areas and (5) Austria.

Core Case 
Study

Domain 
area

Time 
resol.

Official 
Lon 
range

Official 
Lat 
range

Produced 
Lon range

Produced 
Lat range

Resol. 
(◦)

Mean 
resolution 
(approx) 
(km)

Zonal 
resolution 
(longitude 
km)

Meridional 
resolution 
(latitude 
km)

Nlon Nlat Ncells

Guimaraes D0 hourly − 8.666; 
− 7.765

41.183; 
41;701

− 8.710; 
− 7.72

41.120; 
41.750

0.09 9 7.5 9.9 11 7 77

D1 hourly − 8.666; 
− 7.765

41.183; 
41;701

− 8.670; 
− 7.76

41.172; 
41.713

0.01 1 0.8 1.1 91 54 4914

D2 hourly − 8.462; 
− 8.130

41.349; 
41.592

− 8.466; 
− 8.126

41.343; 
41.598

0.005 0.5 0.4 0.6 68 51 3468

D3 hourly − 8.373; 
− 8.256

41.415; 
41.462

− 8.374; 
− 8.255

41.414; 
41.463

0.001 0.1 0.1 0.1 119 49 5831

CMTo D0 hourly 6.371; 
8.745

44.121; 
45.997

6.340; 
8.770

44.060; 
46.040

0.09 9 7.5 9.9 27 22 594

D1 hourly 6.371; 
8.745

44.121; 
45.997

6.350; 
8.750

44.099; 
46.019

0.03 3 2.5 3.3 80 64 5120

D2 hourly 6.500; 
8.200

44.670; 
45.650

6.490; 
8.210

44.660; 
45.660

0.01 1 0.8 1.1 172 100 17,200

D3 hourly 7.366; 
8.011

44.835; 
45.293

7.361; 
8.016

44.829; 
45.299

0.005 0.5 0.4 0.6 131 94 12,314

HUAS D0 hourly 3.995; 
7.839

51.535; 
53.932

3.937; 
7.890

51.47; 
53.9935

0.09 9 7.5 9.9 44 28 1232

D1 hourly 4.169; 
7.408

52.072; 
53.932

4.153; 
7.423

52.056; 
53.946

0.03 3 2.5 3.3 109 63 6867

D2 hourly 5.396; 
7.245

52.609; 
53.465

5.385; 
7.255

52.597; 
53.477

0.01 1 0.8 1.1 187 88 16,456

Euraf D1 Daily − 9.846; 
− 0.750

37.830; 
41.698

− 9.888; 
− 0.708

37.783; 
41.743

0.09 9 7.5 9.9 102 44 4488

D2 Daily − 9.846; 
− 3.350

37.830; 
40.896

− 9.883; 
− 3.313

37.788; 
40.938

0.09 9 7.5 9.9 73 35 2555

Austria D1 Daily 9.271; 
17.290

46.019; 
49.592

9.230; 
17.330

45.96; 
49.65

0.09 9 7.5 9.9 90 41 3690

Table A2 
Hourly climate variables (19) simulated in 5 levels [surface (sfc), 2 m, 10 m, 50 m and 200 m] by statistical downscaling in the DISTENDER project year-by-year for the 
1981–2014 and 2015–2050 periods under the Historical experiment and four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). All the variables of the same 
level are gathered in a unique file per year of simulation.

Level Variable Short name Long name Units Scale factor

sfc rad Total radiation Hourly accumulated downward total radiation at surface J/m2 3600
short_rad Shortwave radiation Hourly accumulated downward shortwave radiation at surface J/m2 3600
long_rad Longwave radiation Hourly accumulated downward longwave radiation at surface J/m2 3600
prec Precipitation Hourly cumulative precipitation mm 0.1

2 m temp Temperature Hourly average air temperature ◦C 0.1
rel_hum Relative humidity Hourly average air relative humidity ◦C 0.1
press Pressure Hourly average of air pressure given at local elevation hPa 0.1

10 m u-wind u-component wind Hourly average of eastward wind m/s 0.1
v-wind v-component wind Hourly average of northward wind m/s 0.1

50 m & 2000 m temp Temperature Hourly average air temperature ◦C 0.1
relhum Relative humidity Hourly average air relative humidity % 0.1
press Pressure Hourly average of air pressure given at local elevation hPa 0.1
u-wind u-component wind Hourly average of eastward wind m/s 0.1
v-wind v-component wind Hourly average of northward wind m/s 0.1
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Table A3 
Daily climate variables (33) simulated in 5 levels (sfc, 2 m, 10 m, 50 m and 200 m) by statistical downscaling in the DISTENDER project year-by-year for the 1981–2014 
and 2015–2050 periods under the Historical experiment and four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). All the variables of the same level are 
gathered in a unique file per year of simulation.

Level Variable Short name Long name Units Scale factor

sfc rad Total radiation Mean power of downward total radiation at surface in a day W/m2 1
short_rad Shortwave radiation Mean power of downward shortwave radiation at surface in a day W/m2 1
long_rad Longwave radiation Mean power of downward longwave radiation at surface in a day W/m2 1
prec Precipitation Total accumulate precipitation in a day mm 0.1

2 m temp_mean Mean temperature Mean air temperature of a day ◦C 0.1
temp_min Minimum temperature Minimum air temperature of a day ◦C 0.1
temp_max Maximum temperature Maximum air temperature of a day ◦C 0.1
relhum_mean Mean relative humidity Mean air relative humidity of a day % 0.1
relhum_min Minimum relative humidity Minimum air relative humidity of a day % 0.1
relhum_max Maximum relative humidity Maximum air relative humidity of a day % 0.1
press Pressure Average of air pressure given at local elevation in a day hPa 0.1

10 m u-wind_mean Mean u-component wind Average of eastward wind in a day m/s 0.1
v-wind_mean v-component wind Average of northward wind in a day m/s 0.1

50 m & 2000 m temp_mean Mean temperature Mean air temperature of a day ◦C 0.1
temp_min Minimum temperature Minimum air temperature of a day ◦C 0.1
temp_max Maximum temperature Maximum air temperature of a day ◦C 0.1
relhum_mean Mean relative humidity Mean air relative humidity of a day % 0.1
relhum_min Minimum relative humidity Minimum air relative humidity of a day % 0.1
relhum_max Maximum relative humidity Maximum air relative humidity of a day % 0.1
press Pressure Average of air pressure given at local elevation in a day hPa 0.1
u-wind_mean Mean u-component wind Average of eastward wind in a day m/s 0.1
v-wind_mean v-component wind Average of northward wind in a day m/s 0.1
temp_mean Mean temperature Mean air temperature of a day ◦C 0.1

Data availability

Data will be made available on request.
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