
Distinct Acceleration Relations of Galaxies and Galaxy Clusters from Hyperconical
Modified Gravity

Robert Monjo1,2,3aa and Indranil Banik4,5aa
1 Area of Physics, University of Alfonso X El Sabio, C/ Arapiles 13, Chamberí, 28015 Madrid

2 Department of Mathematics, Saint Louis University—Madrid Campus, Max Aub street, 5, E-28003, Madrid, Spain
3 Department of Physics and Mathematics, University of Alcalá, Faculty of Sciences, E-28805 Alcalá de Henares, Madrid, Spain

4 Scottish Universities Physics Alliance, University of Saint Andrews, North Haugh, Saint Andrews, Fife, KY16 9SS, UK
5 Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, UK

Received 2025 May 15; revised 2025 July 28; accepted 2025 August 7; published 2025 October 3

Abstract

General relativity (GR) is the most successful theory of gravity, with great observational support on local scales.
However, to keep GR valid over cosmic scales, some phenomena require the assumption of exotic dark matter,
especially the cosmic expansion history and flat rotation curves of galaxies. Their radial acceleration relation
(RAR) indicates a tight correlation between the dynamical mass and the baryonic mass. This suggests that galactic
observations could be better explained by modified gravity theories without exotic matter. Modified Newtonian
dynamics (MOND) is an alternative theory that was originally designed to do exactly this using a new
fundamental acceleration scale, a0, the so-called Milgromian parameter. However, this nonrelativistic model lacks
the flexibility needed to account for the wide variety of observed phenomena. In contrast, a relativistic MOND-
like gravity naturally emerges from the hyperconical model, which derives a fictitious acceleration compatible
with observations. We analyze the compatibility of the hyperconical model with respect to distinct RAR
observations of 10 galaxy clusters obtained from HIFLUGCS and 60 high-quality SPARC galaxy rotation curves.
The results show that a general relation can be fitted to most cases with only one or two parameters, with an
acceptable χ2 and p-value. These findings suggest a possible way to complete the proposed modification of GR on
cosmic scales.

Unified Astronomy Thesaurus concepts: Modified Newtonian dynamics (1069); Galaxy dynamics (591); Galaxy
clusters (584)

1. Introduction

1.1. The Missing Gravity Problem

As is well known, observational tests of general relativity
(GR) show successful results on solar system scales (H. Dittus
& C. Lämmerzahl 2007; I. Ciufolini et al. 2019; X.-H. Liu
et al. 2022; P. Touboul et al. 2022; H. Desmond et al. 2024;
D. Vokrouhlický et al. 2024). The success of standard gravity
seems to be in question only on larger scales (K.-H. Chae
et al. 2020; I. Banik & H. Zhao 2022). It is well known that
exotic cold dark matter (CDM) is required to extend GR to
cosmic scales. However, hypothetical CDM particles present
strong challenges, in particular the tight empirical relationship
between observed gravitational anomalies and the distribution
of visible baryonic matter in galaxies (S. Trippe 2014;
D. Merritt 2017; J. S. Goddy et al. 2023). This empirical law
is known as the mass-discrepancy acceleration relation
(MDAR; S. S. McGaugh 2004; A. Di Cintio &
F. Lelli 2015; H. Desmond 2016), the mass–luminosity
relation (A. Leauthaud et al. 2010; A. Cattaneo et al. 2014),
the baryonic Tully–Fisher relation (BTFR; F. Lelli et al. 2019;
J. S. Goddy et al. 2023), or the more general radial acceleration
relation (RAR; S. S. McGaugh et al. 2016; F. Lelli et al. 2017;
Y. Tian et al. 2020).

Y. Tian et al. (2020) found that the observed RAR in galaxy
clusters is consistent with predictions from a semianalytical model
developed in the framework of standard Lambda CDM (ΛCDM;
G. Efstathiou et al. 1990; J. P. Ostriker & P. J. Steinhardt
1995). To explain how the contribution of CDM is determined by
that of baryons, some authors suggest that they present a strong
coupling that leads to an effective law like the MDAR/BTFR/
RAR (L. Blanchet 2007; A. Katz et al. 2016; R. Barkana 2018;
B. Famaey et al. 2020). It has also been argued that such a
correlation can arise in the ΛCDM framework once baryonic
feedback effects are simulated with adequate resolution
(F. J. Mercado et al. 2024).
The absence of any direct or indirect nongravitational

detection of dark matter suggests that it may have a very weak
or even nonexistent interaction with baryons (C. Abel et al.
2017; S. Hoof et al. 2020; P. Du et al. 2022; J. Aalbers et al.
2023; X.-S. Hu et al. 2024), which is in conflict with these
tight empirical relationships. Moreover, excess rotation occurs
only where the Newtonian acceleration aN induced by the
visible matter satisfies aN ≲ a0 ≈ 1.2 × 10−10 m s−2,
suggesting that the missing gravity problem is a spacetime
problem rather than a matter-type problem. This is also
consistent with the deficient dark matter halos observed in
some relic galaxies, even though their accelerations exceed the
a0 threshold (S. Comerón et al. 2023). In other cases, the CDM
halo hypothesis predicts a systematically deviating relation
from the observations, with densities about half of what is
predicted by CDM simulations (W. J. G. de Blok et al. 2008).
In general, galaxy rotation curves and velocity dispersions
appear to be more naturally explained by modified gravity
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(S. S. McGaugh et al. 2007, 2016; B. Famaey & S. S. McGaugh
2012; I. Banik & H. Zhao 2022; K.-H. Chae 2022).
The dark matter hypothesis also presents difficulties in

explaining some phenomena such as the absence of the
expected Chandrasekhar dynamical friction in cluster colli-
sions, falsified by more than 7σ (P. Kroupa 2015; E. Ardi &
H. Baumgardt 2020; P. Kroupa et al. 2023). The lack of
dynamical friction on galaxy bars strongly suggests that the
central density of CDM in typical disk galaxies is much lower
than expected in standard CDM simulations (M. Roshan et al.
2021). Another example is the morphology of dwarf galaxies.
According to E. Asencio et al. (2022), the observed
deformations of dwarf galaxies in the Fornax Cluster and the
lack of low surface brightness dwarfs near its center are
incompatible with ΛCDM predictions. Moreover, the dwarfs
analyzed in that study have sufficiently little stellar mass that
the observations cannot be explained by baryonic feedback
effects, but they are consistent with Milgromian or modified
Newtonian dynamics (MOND; M. Milgrom 1983). Therefore,
most observations suggest the need to explore modified gravity
as an alternative to the standard model (S. Trippe 2014;
D. Merritt 2017).

1.2. Beyond the MOND Paradigm

The MOND paradigm has been deeply explored from
galactic dynamics to the Hubble tension, which is explained by
a more efficient (early) formation of large structures such as
the local supervoid (R. C. Keenan et al. 2013; M. Haslbauer
et al. 2020; I. Banik & H. Zhao 2022; S. Mazurenko et al.
2024, 2025; I. Banik & V. Kalaitzidis 2025). The RAR has
been thoroughly analyzed using galaxy rotation curves
collected from the Spitzer Photometry and Accurate Rotation
Curves (SPARC) sample (F. Lelli et al. 2016, 2019). The
results were anticipated over three decades ago by MOND
(M. Milgrom 1983; S. S. McGaugh et al. 2016), although the
form of the transition between the Newtonian and Milgromian
regimes must be found empirically.
However, the relativistic formulation of MOND has been

less successful. In particular, Bekenstein proposed a non-
cosmological version of tensor–vector–scalar (TeVeS) gravity
(J. D. Bekenstein 2004; B. Famaey & S. S. McGaugh 2012)
that predicts unstable stars on a timescale of a few weeks
(M. D. Seifert 2007), which is only avoidable with an
undetermined number of terms (N. E. Mavromatos et al.
2009). To solve these issues, C. Skordis & T. Złośnik (2021)
found that, by adding terms analogous to the Friedmann–
Lemaître–Robertson–Walker (FLRW) action, at least the
second-order expansion is free of ghost instabilities. Their
model is also capable of obtaining gravitational waves
traveling at the speed of light c, which was not the case with
the original TeVeS. However, the authors pointed out that it
needs to be embedded in a more fundamental theory.
Recently, L. Blanchet & C. Skordis (2024) proposed a

relativistic MOND formulation based on spacetime foliation by
three-dimensional space-like hypersurfaces labeled by the
Khronon scalar field. The idea is very similar to the Arnowitt–
Deser–Misner treatment in the dynamical embedding of the
hyperconical Universe (R. Monjo 2017, 2018, 2023,
2024a, 2024b; R. Monjo & R. Campoamor-Stursberg 2020).
Applying perturbation theory to the hyperconical metric

gives a relativistic theory with MOND phenomenology, which
adequately fits 123 SPARC galaxy rotation curves

(R. Monjo 2023). The cosmic acceleration derived from it is
/a c t20 0

1 , where t is the age of the Universe and γ0 > 1
is a projection parameter that translates from the ambient
spacetime to the embedded manifold (R. Monjo & R. Camp-
oamor-Stursberg 2023; R. Monjo 2024b). In contrast to the
Milgrom constant a0, the cosmic acceleration aγ0 is a variable
that depends on the geometry considered, especially the ratio
between the Kepler–Newton orbital speed and the Hubble flux.
Numerical equivalence between the a0 and aγ0 scales is found
for γ0 ≈ 13 ± 3 or, equivalently, for ±0.08 0.020

1 .
In the limit of weak gravitational fields and low velocities,

the hyperconical model is also linked to the scalar tensor
vector gravity (STVG) theory, popularly known as Moffat
gravity (MOG; J. W. Moffat 2006). The MOG/STVG model
is a fully covariant or Lorentz-invariant theory that includes a
dynamical massive vector field and scalar fields to modify GR
with a dynamical “gravitational constant” G (J. W. Moffat &
V. T. Toth 2009, 2013; S. Harikumar & M. Biesiada 2022). In
particular, MOG leads to an anomalous acceleration of about

/×G D c t2 1.1 10 m s 2G
2 10 2

0
1 for γ0 ≈ 12,

with αG ≈ 10 and the universal MOG constant
/= ×D M6.25 10 kpc3 1 2 1. Fixing these parameters using

galaxy rotation curves, MOG fails to account for the observed
velocity dispersion profile of Dragonfly 44 at 5.5σ confidence,
even if one allows plausible variations to its star formation
history and thus stellar mass-to-light ratio (H. Haghi et al.
2019). MOG also struggles to explain the Galactic rotation
curve, where the discrepancy is smaller but the measurements
are more accurate (C. Negrelli et al. 2018).
The number of parameters needed to accommodate most

theories to observations of galaxy clusters is perhaps too large
and unnatural. In all cases, additional theoretical motivation is
necessary for the phenomenological parameters, e.g., the CDM
distribution profile, the ad hoc MOND interpolating function
μ, and the MOG constant D. In contrast, the hyperconical
model proposed by Monjo derives a natural modification to
GR from minimal dynamical embedding in a (flat) five-
dimensional Minkowskian spacetime (R. Monjo 2023, 2024a,
2024b). The hyperconical model is a kind of coasting Universe
like Melia’s Rh = ct model (F. Melia 2007; F. Melia &
M. López-Corredoira 2022). An important difference is that
those models assume GR to be valid cosmologically
(F. Melia 2017), while the hyperconical model assumes GR
to be valid only at a local scale (R. Monjo 2024b). Since the
late Universe expansion history is very close to linear even in
ΛCDM (R. Monjo 2017; Planck Collaboration et al. 2020) and
according to myriad observations, it is reasonable to explore
how linear expansion impacts the local GR.
Therefore, this paper aims to show how the anomalous RAR

in 10 galaxy clusters analyzed by D. Eckert et al. (2022) and
P. Li et al. (2023) can be adequately modeled by local GR in
hyperconical modified gravity (HMG; R. Monjo 2023). As
Y. Tian et al. (2020) pointed out, clusters present a larger
anomalous acceleration (g ∼ 10−9 m s−2) than galaxy rotation
curves (g ∼ 10−10 m s−2), reflecting the missing baryon
problem that remains a challenge for MOND in galaxy clusters
(B. Famaey & S. S. McGaugh 2012; P. Li et al. 2023;
R. Kelleher & F. Lelli 2024; Y. Tian et al. 2024). This open
issue is addressed here with the following structure. Section 2
summarizes the data used and the HMG model, Section 3
shows the main results in the fits and discusses predictions for
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galaxies and smaller systems, and finally, Section 4 points out
the most important findings and gives our concluding remarks.

2. Data and Model

2.1. Observations Used

We used observational estimates of the RAR (total gravity
observed compared to Newtonian gravity due to baryons) for 10
galaxy clusters that were collected from the HIghest X-ray
FLUx Galaxy Cluster Sample (HIFLUGCS; P. Li et al. 2023).
In particular, the galaxy clusters considered are as follows:
A0085, A1795, A2029, A2142, A3158, A0262, A2589, A3571,
A0576, and A0496. These clusters have redshift z in the range
0.0328–0.0899. We also compare our results to rotation curves
collected from 60 high-quality SPARC galaxies filtered to well-
measured intermediate radii (S. S. McGaugh et al. 2007, 2016;
F. Lelli et al. 2019).

2.2. RAR from HMG

Our main aim is to assess whether the empirical RAR agrees
with the HMG as developed by R. Monjo (2023) and
summarized here. Let g be the background metric of the so-
called hyperconical Universe (R. Monjo 2017, 2018; R. Monjo
& R. Campoamor-Stursberg 2020, 2023). Working in units
where c = 1 and the age of the Universe is t0 = 1, the metric g
is locally approximately given by

( )

( )+

g dt kr

t

t

dr

kr
r d

r tdr dt

t kr

1

1

2

1
, 1

2 2

2

0
2

2

2
2 2

0
2 2

where /=k t1 0
2 is the spatial curvature for the current age t of

the Universe, t/t0 is the scale factor associated with lengths
because the expansion history is linear (R. Monjo 2024b),
r t0 is the comoving distance, and Σ represents the angular
coordinates. It is important to note that this background metric
is naturally induced from dynamical embedding of a linearly
expanding three-sphere into a five-dimensional Minkowskian
spacetime when comoving observers measure distances
(R. Monjo 2024a, 2024b). Thus, our metric deviates from
the standard FLRW construction, which assumes a static
embedding of spatially maximally symmetric three-manifolds
(obtaining ( )/ +dr kr r d12 2 2 2) and a dynamical factor
a(t) that is included ad hoc to represent the expansion. In our
framework, comoving observers lead to shift and lapse terms
in Equation (1), representing an apparent radial spatial
inhomogeneity that appears as a fictitious acceleration with
adequate stereographic projection coordinates (R. Monjo &
R. Campoamor-Stursberg 2023).
Moreover, since the Universe is not empty, such a

projection depends on the matter source. In particular, any
gravitational system of mass Msys (enclosed at a given radius)
generates a perturbation over the background metric
(Equation (1)) that can be written as ˆg g such that

ˆˆ ˆ ( ˆ ) ˆ/+kr kr kr GM r r22 2 2
sys . Applying the validity

of GR at a local scale (Appendix A), the perturbation term
ˆ ˆh g g is a key aspect of the HMG model (Appendix B).
Also important is the stereographic projection of the

coordinates ˆ /=r r r1 2 and ˆ =t t t , both of which
are given by a scaling factor λ ≡ 1/(1 − γ/γ0) that is a function

of the angular position ( )/= r tsin 1
0 and a projection factor

= cos0
1

sys
1

sys, where γsys is the characteristic angle of the
gravitational system (Appendix C). In an empty Universe,

/= cosU U0 . We expect γU = π/3 and therefore
γ0 = 2π/3 ≈ 2. The projection factor of maximum causality,

= 10
1 , arises for γU ≈ 0.235π as then = cosU U . The

maximum value of 0
1 is found to be a physical observable

instead of a gauge choice. That is, the stereographic projection
(from the ambient five-dimensional to the physical four-
dimensional spacetime) represents a dynamical embedding map
rather than an arbitrary change of coordinates. Because it rescales
the lapse function, it modifies the effective gtt experienced by
observers confined to the intrinsic hypersurface, giving rise to the
apparent acceleration. Details are worked out in Appendix B.
When geodesic equations are applied to the projected time

component of the perturbation ĥtt, a fictitious cosmic
acceleration of roughly /c t0

1 emerges in the spatial direction
(see Appendix C.3),

( )
/

a a

c t

1 cos
, 2tot N

0

sys

sys

where aN ≡ GMsys(r)/r2 is the Newtonian acceleration.
However, a time-like component is also found in the
acceleration that contributes to the total centrifugal accelera-
tion aC such that (see Equation (C16) of Appendix C.3)

( )+a a a
c

t

2
, 3C N

2
N

0

which is useful to model galaxy rotation curves under the
HMG framework (R. Monjo 2023). Alternatively to
Equation (2), the cluster RAR is usually expressed as a
quotient between total and Newtonian (spatial) acceleration,

( )+
a

a

c

a t
1 , 4tot

N N 0

with a factor = cos0
1

sys
1

sys, where the projective angle
γsys can be estimated from the cluster approach
(Equation (C6)) or from the general model (Equation (C4)).
To obtain this, we consider the relative geometry (angle)
between the Hubble speed vH ≡ r/t and the Newtonian circular
speed ( )/v GM r rN sys , which are defined at the radial size
r of the (sub)system considered, leading to the following
relations for clusters and general systems:

( ) ( )
( )

( ) ( )
( )×

+

r

v r

v r v r

sin sin sin sin

2

2
5

U
2

clu
2

cen
2

cen
2

N
2

H
2

H
2

N
2

( ) ( )
( ) ( )
( ) ( )

( )

+

×
+

r

v r v r

v r v r

sin sin sin sin

2

2
, 6

U U
2

sys
2 2

cen
2

N
2

H
2

H
2

N
2

H
2

H
2

where ( )rsys is the projective angle of the gravitational
system (galaxy or cluster), γcen is the gravitational angle of its
central element (black hole or brightest galaxy, respectively),
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and the fitting parameter

( )
( )

( )+
v r

v r

1

6

2
7

vac vac
H
2 nei nei N

2
nei

H
2

nei

is defined as the relative density of the neighborhood. This is
the average density ρnei = ρnei(rnei) enclosed within radius rnei
divided by the cosmic background (vacuum) density
ρvac ≡ 3/(8πGt2). Note that H

2 is not constant, as ρnei depends
on rnei. However, the variation between different clusters (or
galaxies) is significantly larger than the internal variability
within the data range used for each individual system.
Therefore, we adopt a zeroth-order approximation (i.e., the
first term in the Taylor expansion about a representative value
of H

2 ) for each gravitational system. Although H
2 is not a free

parameter (as it can be determined from the observed baryonic
density), the value of rnei is not available from the data set
used, so we estimated the order of magnitude of εH by fitting
galaxy rotation curves. The minimum value of /= 1 6H

2 is
required for the case with vN = 0. Thus, the parameter H

2 is
interpreted as a theoretical point of balance between the orbital
speed vN and Hubble flux vH (see Appendix C.1 for further
information).
To better interpret the parameters γcen and γU, it is useful to

remember that they correspond to the upper domain of the
angular coordinate γ, which is bounded by two extreme
conditions:

1. the domain of the Universe (γU = π/3) when gravita-
tional systems are negligible compared to the Hubble
flux (R. Monjo & R. Campoamor-Stursberg 2023) and

2. the maximum allowed value of γ is γcen = π/2, found
when the gravitational system is very strong (e.g., in a
galaxy center) and therefore it is disconnected from the
cosmic expansion (R. Monjo 2023).

Therefore, γcen ≈ π/2 and γU ≈ π/3 can be fixed here to set a
one-parameter (εH) general model from Equation (6). As a
second-order approach, this study also assumes that ( ),H cen
can be free in our two-parameter model for clusters
(Equation (5)).

3. Results and Discussion

3.1. Fitted Values

Individually, fitting of Equation (5) for the quotient between
total and Newtonian acceleration (Equation (4)) leads to a
square root of the relative density of about = +38H 11

29 (90%
confidence level; Appendix C.4). Using the specific model for
clusters (Equation (5)), all fits provide an acceptable
χ2 (p-value < 0.667), except for cluster A2029, which did
not pass the χ2 test for the fixed neighborhood projective angle
of γ0 = 2 (i.e., γU = π/3). However, it did for γ0 = 1 (i.e.,
γU ≈ 0.235π), which implies that we need to use the causality
limit for the cosmic acceleration instead of the empty-space
limit.
Globally, the correlation of RAR values (differences) with

respect to the Newton–Hubble speed ratio approach
(Equations (2) and (5)) is slightly higher (R2 = 0.83) than
with respect to using the Newtonian acceleration (R2 = 0.79).
The simplest model of fixing γU = π/3 and using a single
global parameter of = +40H 6

8 gives a Pearson coefficient of

R2 = 0.75, while if γU = π/3 is replaced by γU = 0.235π, we
get instead that R2 = 0.83 with = +60H 8

20 (90% confidence
level).
Larger anomalies in acceleration are found for the higher

orbital speeds in clusters ( / /v v 2N H H ). However, this is
the opposite for galaxies, which experience the maximum
anomaly for low orbital velocities ( / /<v v 2N H H ), as
shown in Figure 1. In clusters, the relative density between
the dominant brightest cluster galaxy and the neighborhood
determines this opposite behavior. The equilibrium value of

/ /v v 2N H H points to the transition regime between small
and large anomalies, i.e., as small and large proportions of
missing gravity using standard physics.

3.2. Predictions for Galaxy and Cluster Dynamics

As discussed in Section 1, HMG derives a relationship
between the Milgromian acceleration parameter a0 ≈ 1.2 ×
10−10 m s−2 and the cosmic parameter c/t ≈ 6.9 × 10−10 m s−2,
since /a a c t20 0 0

1 for galaxy rotation curves assuming
an approximately constant 0.080

1 (R. Monjo 2023). How-
ever, the geometry of gravitational systems leads to a variable
projection factor ( )0, 10

1 , depending on the ratio between
Newtonian orbital speed and Hubble flux. This projection factor
sets the additional contribution to the apparent acceleration in any
given system, which can therefore be larger than the MOND a0.
According to the general model of projective angles

(Equation (6)), it is expected that galaxies and galaxy clusters
exhibit opposite behaviors in their dependence on the speed,
but both follow the same theoretical curve. Using γcen = π/2,
γU = π/3, and = +56H 12

22 as obtained from the cluster data,
we apply Equations (2) and (6) to predict the behavior of
60 galaxies whose data were collected by S. S. McGaugh et al.
(2007). By directly applying Equation (6) to the orbital speed
of galaxies, the relative anomaly ( ) ( )/ / =a a c ttot N 0

1 is
predicted to lie between 0.05 and 0.40, which is close to the
value of = +0.070

1
0.02
0.03 implied by galaxy rotation curves.

The wide range of 0
1 in clusters depends on the ratio vN/vH

between the orbital speed vN and the Hubble flux vH, the
central projective angle 0.47π ≲ γcen ≲ 0.50π, and the
parameter εH� 1. For galaxy rotation curves, this additional
dependency is not evident beyond the usual dependence on aN
according to thorough reviews of MOND interpolating
functions, showing that γ0 is almost constant and the actual
gravity only depends on the Newtonian acceleration (I. Banik
& H. Zhao 2022; R. Stiskalek & H. Desmond 2023). This
apparent weakness of the model is easily solved by the fact
that an almost constant 0

1 is obtained from the two-parameter
model (Equation (6)) with fitted values of γcen (top left panel
of Figure 2). Moreover, the relation of the rotation curve with
vN/vH is highly nonlinear as it depends on trigonometric
functions. Finally, the correlation between the Newtonian
acceleration aN ∝ r−2 and the flux ratio vN/vH ∝ r−3/2 is very
high for galaxies (R ≈ 0.90, p-value < 0.001), so the families
of interpolating function ( )f aN remove almost all of this
nonlinear dependency. In any case, the effective interpolating
function of the HMG model is compatible with the best
MOND functions (top right panel of Figure 2). It is important
to note that HMG predicts the form of the interpolating
function, which is arbitrary in MOND and must be found from
observations.
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After analyzing observations by applying Equation (6) to the
galaxy rotation curves with γU = π/3, we get a value of

= +21H 11
32 for γcen = π/2 while assuming instead that

γcen = 0.48π gives = +18H 10
28. Both are statistically

compatible with the cluster-based fitting, which gives
= +56H 12

22 (bottom left panel of Figure 2). In particular, a
value of εH ≈ 45 is compatible with both data sets, albeit with
a wide variability between the different cases. However, the
parameter εH is not free at all because there is a significant
correlation (R > 0.85, p-value < 0.001) of the form

( )rH typ for galactic mass densities ρ(rtyp) at distances of
rtyp ∼ 50–200 kpc (Appendix C.4 and Figure 5). This gives

( )/rH typ vac for the vacuum density ρvac = 3/(8πGt2),
justifying the name of the parameter εH as the square root of
the relative density of the neighborhood (Equation (C2)).
Finally, an empirical relationship (R > 0.80, p-value < 0.001)
is also found between cos cen and log H for galaxies, which
suggests that the tight range of values of γcen strongly depends
on the geometrical features of the gravitational system.
The range of εH (usually between 10 and 100) ensures that

galaxies and clusters show a flat rotation curve that extends out
to at least 1 Mpc, which is quite consistent with the extended
flat rotation curves around isolated galaxies, as revealed by
weak lensing of background galaxies collected from the Kilo-
Degree Survey (M. M. Brouwer et al. 2021; T. Mistele et al.
2024). The clusters N5044, N533, A2717, and A2029, with a
baryonic mass between 1012 M⊙ and 10

13 M⊙ enclosed within
a radius of 1 Mpc (G. W. Angus et al. 2008), produce the
following values: (1) an empirical density of εH ∼ 10, (2) an
acceleration between 10−13 and 10−11 m s2, (3) a Hubble flux
vH of about 70 km s

−1, and (4) a circular speed vN between 70
and 600 km s−1. These circular speeds at 1 Mpc imply that the

projection factor 0
1 is between 0.07 and 0.35, producing

anomalous accelerations comparable to the Milgromian scale a0
as = ±0.08 0.010

1 . The anomaly is noticeably reduced to
0.003 0.030

1 at 10 Mpc, which is less than half of a0.

3.3. Prediction for Small Systems

For small gravitational systems, the orbital velocity vN is
much higher than the Hubble flux vH, so it is expected that
cosmic effects are negligible (with / /v v 2N H H ). This is
because the ratio between the Kepler–Newton speed and the
Hubble flux is independent of the size of a spherical system
with constant density, but smaller systems tend to be much
denser than larger ones. For example, according to
Equation (6), an anomaly of only ×+6.4 10 m s0.4

1.0 17 2

(90% confidence level) is predicted for the solar system at
the distance of Pluto’s orbit. The predicted anomaly is even
smaller for Saturn at 10 au, which is well consistent with the
null detection of anomalous effects there from Cassini radio
tracking data (A. Hees et al. 2014; H. Desmond et al. 2024).
For the Oort cloud, which hypothetically extends between 2
and 200 kau, the predicted anomaly /a c t0

1 increases
from ×+2.2 10 m s0.1

0.4 14 2 to ×+2.3 10 m s0.1
0.4 11 2, respec-

tively. The latter value is about 20% of the Milgrom
acceleration a0 ≈ 1.2 × 10−10 m s−2 and could therefore be
detected in the future. The most aligned finding is that shown
by the work of C. Migaszewski (2023), who suggests that
Milgromian gravity could explain the observed anomalies of
extreme trans-Neptunian objects and the Oort cloud (2–200 kau,
up to 20% of aN). K. Brown & H. Mathur (2023) claimed that
the farthest Kuiper Belt objects (∼250 au) also present a
MOND signal, but the very detailed orbit integrations
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Figure 1. RAR modeling with HMG for the total acceleration (atot) compared to the Newtonian acceleration (aN). Left: individual fitting (Equations (4) and (5)) for
the galaxy clusters considered (P. Li et al. 2023) using two parameters (εH and γcen; Table 1). Right: global fitting for all data according to three models: MOND-like
constant (blue band), general model (gray band; Equations (2) and (6)), and cluster model (red band; Equations (2) and (5)). The MOND-like model with constant

= cos0
1

sys
1

sys was considered with = +0.466sys 0.01
0.011 , which corresponds to Milgrom’s constant /= = ×+a c t2 1.01 10 m s0 0

1
0.32
0.33 10 2 (R. Monjo 2023).

In the right panel, both the general model and the specific approach for clusters use only one free parameter (εH), done by setting the projective angle of the galaxies
to γcen = π/2 and γU = π/3. The general model (gray band) is represented by = +56H 12

22, while the cluster approach (red band) considers an average of = +40H 6
8,

with εH being the value of vN/vH that leads to the maximum RAR anomaly. The shaded areas represent 90% confidence intervals.

5

The Astrophysical Journal, 992:35 (16pp), 2025 October 10 Monjo & Banik



performed by D. Vokrouhlický et al. (2024) suggest that this
interpretation neglects the crucial role of the external field
direction rotating as the Sun orbits the Galaxy. Once this is
included, it is clear that MOND cannot explain the clustering of

orbital elements presented by the observations. In fact,
D. Vokrouhlický et al. (2024) exclude the possible effects of
MOND on scales up to about 5–10 kau, which is more
consistent with the findings of C. Migaszewski (2023).
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Figure 2. Galaxy rotation curves (squares; S. S. McGaugh et al. 2007) compared with the cluster RAR (circles; P. Li et al. 2023). Top left: fitting of galaxy rotation
curves according to the HMG model (Equation (C16); R. Monjo 2023), where γ0 is modeled by Equation (6) with εH the only free parameter and γcen = 0.48π
(dashed lines), or with two parameters (εH and γcen; solid lines). Top right: performance of the one-parameter (dashed gray lines) and two-parameter (solid gray lines)
model for the ratio of predicted (apred) and observed (aobs) centripetal acceleration for the 60 galaxies (light gray lines). Results are compared with the McGaugh-
Lelli-Schombert (MLS), simple, standard, and sharp MOND interpolation functions fitted to 153 suitable galaxies. The 1σ confidence intervals for all functions
(upper and lower lines of each color) are found as in Figure 23 of I. Banik et al. (2024). Bottom left: global fitting of the data set according to Equations (2) and (6).
Bottom right: zoom-in on the theoretical prediction made for galaxies fitted using Equation (6) with = +21H 11

32. As in Figure 1, the general model prediction for
galaxies (gray band) corresponds to the parameter = +56H 12

22 as an average value of the cluster fitting, with fixed γcen = π/2 and γU = π/3. To compare, the
MOND-like model and the observational constraint of the general HMG model are also shown, with the shaded area representing the 90% confidence interval.
Taking into account that the density of the surrounding system (ρnei) is mainly represented by the fitting parameter ( ) ( )/ /v r v r2H

2
nei vac N

2
nei H

2
nei for a certain

rnei, the interpretation of the abscissa axis (Newton–Hubble ratio) is ( ) [ ( )] [ ( ) ( )] [ ( ) ( ])/ / / /v r v r v r v r v r v r2 N H H N H N nei H nei . Therefore, the abscissa axis
represents how far this is from unity, so it is closely related to vN/vH, but this ratio is modulated by the factor 1/εH, so the maximum RAR anomaly occurs at unity.
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Therefore, these findings require further analysis to compare
them with the hypothesis of a ninth planet in the trans-
Neptunian region (K. Batygin et al. 2024).
In the case of wide binaries, the typical orbital speed at

r ∼ 0.1 pc is about vN = 350 m s−1, while the Hubble flux is
vH = r/t ∼ 7 × 10−3 m s−1. Thus, the Newtonian acceler-
ation is /= × < ×a v r a4.1 10 m s 1.2 10 m sN N

2 11 2
0

10 2. This
is theoretically within the classical MOND regime as aN < a0,
leading to an expected 20% enhancement in the Keplerian
orbital velocity and thus making wide binaries an important
testing ground for MOND (I. Banik & H. Zhao 2018).
However, the speed flux is vN/vH = 5 × 104, so we expect
only a very small anomaly (i.e., a large projective angle γsys).
Assuming that γcen = π/2, γU = π/3, and a global value of

= +40H 20
30 in Equation (6), the projective angle γsys

= –/ ×+2 2.20 100.35
0.14 4 , which corresponds to a projection

parameter of = cos0
1

sys
1

sys = ×+4.4 100.3
0.7 4. The

acceleration anomaly would then be Δa ≡ atot − aN =
/ = ×+c t 3.1 10 m s0

1
0.2
0.4 13 2 (90% interval), that is, a

prediction of 2.9 × 10−13 m s−2 < Δa < 3.5 × 10−13 m s−2

at the 90% confidence level.
Therefore, the acceleration anomalies expected for small

systems are less than 1% of the original Milgrom constant
a0 ≈ 1.2 × 10−10 m s−2. This result is consistent with recent
comparisons between standard gravity and MOND with data
from Gaia wide binary systems (C. Pittordis & W. Sutherland
2019, 2023; I. Banik et al. 2024; S. A. Cookson 2024).
However, other authors dispute these results using different data
selection criteria and analysis techniques (e.g., X. Hernandez
2023; X. Hernandez et al. 2023; K.-H. Chae 2023,
2024a, 2024b). The wide binary test is still actively debated.
For instance, X. Hernandez et al. (2024) and X. Hernandez &
P. Kroupa (2025) raise three methodological issues: (i)
unrecognized hierarchical triples, (ii) velocity uncertainties
due to observational noise, and (iii) insufficient modeling of
systematics in statistical inference. Their reanalysis finds
evidence for a residual MOND-like signal at projected
separations ≳0.015 pc, with a clear deviation from Newtonian
expectations of about 22% ± 8% in the 0.015–0.06 pc range.
On the other hand, claims to have detected MOND signals
cannot be easily reconciled with Cassini radio tracking data
(H. Desmond et al. 2024) and observations of trans-Neptunian
objects and long-period comets within the solar system
(D. Vokrouhlický et al. 2024). Meanwhile, HMG naturally
predicts negligible deviations from Newtonian dynamics in this
regime.

3.4. Strengths and Limitations of the Model

The HMG model is not a complete cosmology. Our focus
here is on virialized structures and dynamics in the late
Universe (z ≲ 2). With a careful comparison to the observed
RAR across the full range of probed accelerations in SPARC
galaxies and HIFLUGCS galaxy clusters, we show that our
two-parameter model is compatible with the latest observa-
tions. Moreover, our two parameters are not completely free—
they naturally relate to the density of observed matter
(Figure 5). This is an advantage because the usual modified
gravity theories have difficulty explaining why the RAR
differs between galaxies and clusters (e.g., see Figure 5 of
P. Li et al. 2023).

Nevertheless, HMG faces some limitations in the early
epochs of the Universe because the model distinguishes
between extrinsic (linear expansion) and intrinsic (fictitious
acceleration) perspectives. In particular, linear expansion
cannot explain the observed cosmic microwave background
(CMB) power spectrum and Big Bang nucleosynthesis (BBN)
due to its very nonstandard timing of key phase transitions,
which occur at particular temperatures and thus values of the
scale factor (S. Faisal ur Rahman & M. Jawed Iqbal 2019;
C. Skordis & T. Złośnik 2021; E. Grohs & G. M. Fuller 2022).
Altering the timeline by even a single minute could
have serious implications for BBN given that free neutrons
have a decay time of 15 minutes (R. H. Cyburt et al.
2016; M. Haslbauer et al. 2020; I. Banik & H. Zhao 2022).
Therefore, the intrinsic viewpoint of the HMG model needs to
address earlier periods in which the expansion history is closer
to the standard cosmological model.
According to R. Monjo & R. Campoamor-Stursberg (2023),

the apparent cosmic timeline of the intrinsic hyperconical
Universe is the same as the standard model, producing a fictitious
acceleration compatible with the observed dark energy phenom-
enology (R. Monjo 2024a, 2024b). In particular, the hyperconical
model shows that there exists a unique local solution that
produces a fictitious dark energy parameter of ΩΛ = 2/3, while
global solutions produce ΩΛ ≈ 0.7. This suggests that the HMG
model is promising in later epochs. In future work, we will
deeply analyze the ability of the model to reproduce both CMB
and BBN observations. The key idea is the dynamical embedding
technique in which the linear expansion is actually only in the
ambient spacetime as a global time (geometrically, it is the
transverse flux of the slicing/foliation on Cauchy surfaces).
However, the redshift describes the geodesics of light in the
intrinsic metric that presents fictitious acceleration, so its apparent
timeline should be the standard one (as described by observers).
Therefore, observational tensions arise when trying to work out
an apparent expansion history a(t) in the model, i.e., what a late-
time observer would actually infer from redshift and luminosity
distance or from distance ladder techniques, predicting a Hubble
tension (R. Monjo & R. Campoamor-Stursberg 2023).

4. Concluding Remarks

Acceleration is not a geometrical invariant but rather
depends on the reference system or framework considered.
The hyperconical model (HMG) shows that it is possible to
derive local-scale GR to model gravitational systems with
anomalous acceleration similar to that attributed to dark matter
or dark energy (R. Monjo 2023; R. Monjo & R. Campoamor-
Stursberg 2023). Other MOND-based relativistic theories also
obtain good performance when modeling galaxy rotation
curves with a single global parameter based on acceleration.
However, parameters other than acceleration are required
because the classical MOND-based RAR does not extend to
clusters, and also because recent observations show that
gravity is mostly Newtonian on scales smaller than about
10 kau with high precision, even at low acceleration.
This study presents a generalized applicability of the HMG

model to a wide range of acceleration anomalies in
gravitational systems. Good agreement was obtained with
the data collected from 10 galaxy clusters and 60 high-
quality galaxy rotation curves. The technique developed for
the perturbed metric follows the geometric definition of the
sinus of a characteristic angle γsys as a function of the
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Newtonian orbital speed (vN) and the Hubble flux (εHvH), i.e.,
( ) ( )r v v rsin sin 2Usys

2 2 2
N
2

H
2

H
2 for γU = π/3.

The function ( )r does not depend on the speeds. It can be
fixed by setting two parameters as γsys = γsys(γcen, εH).
These parameters are a central projective angle 0.47π ≲
γcen ≲ 0.50π and a relative density εH� 1.
From the fitting of the general model of γsys (Equation (6))

to the cluster RAR data, an anomaly between 0.05c/t and
0.40c/t is predicted for the galaxy rotation dynamics. This is
statistically compatible with the observational estimate of

/+ c t0.07 0.02
0.03 . As for any modified gravity theory, the challenge

was to derive a tight RAR compatible with observations with
few free parameters. Classical MOND only has a global free
parameter a0, but it does not specify the interpolating function,
so MOND actually has a lot of freedom to fit observations of
galaxy dynamics. In contrast, the HMG model derives a
unique interpolation function for rotation curves using only
two parameters ( ),H cen that are not totally free because they
are related to the density of matter.
For objects in the outer solar system, such as the farthest

Kuiper Belt objects or bodies in the Oort cloud, anomalies
between 10−14 m s−2 and 10−11 m s−2 are predicted at 1 kau and
100 kau, respectively. Similarly, for wide binary systems,
anomalies are expected within the range of 2.9 ×
10−13 < Δa < 3.5 × 10−13 m s−2 (90% confidence level).
Such small predicted anomalies imply that local wide binaries
should be Newtonian to high precision, as is within the
observational limits.
This work provides a chance to falsify a wide range of

predictions of a relativistic MOND-like theory that has
previously collected successful results in cosmology
(R. Monjo 2024b). In future work, we will address other open
challenges, especially the modeling of cosmic structure growth
and the evolution of early stages of the Universe related to the
CMB angular power spectrum and the BBN observations.
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Appendix A
Perturbed Vacuum Lagrangian Density

This Appendix summarizes the definition of the local Einstein
field equations according to the hyperconical model, that is, by
assuming that GR is only valid at local scales (R. Monjo &
R. Campoamor-Stursberg 2020; R. Monjo 2024b). In particular,
the new Lagrangian density of the Einstein–Hilbert action is
obtained by extracting the background scalar curvature Rhyp
from the total curvature scalar R → ΔR ≡ R − Rhyp as follows:

( )

= + = +

=

L L
G

R
G

R
t

c

G
R

1

16

1

16

6

16
, A1

M M2

2

where G is the Newtonian constant of gravitation, Rhyp = −6/t2
is the curvature scalar of the (empty) hyperconical Universe,

=LM M is the Lagrangian density of classical matter, and
Δρ ≡ ρM − ρvac is the density perturbation compared to the
“vacuum energy” ρvac = 3/(8πGt2) with a mass-related event
radius ˜r M =GM G t t2 2 vac

4

3
3 , where M is a “total

mass” linked to ρvac. Moreover, the orbital velocity vN(ρvac)
associated with ρvac at r is given by ( ) =v2 N

2
vac

/= =G r r t v2 vac
4

3
3 2 2

H
2. Therefore, a total density ρM leads

to a total squared orbital velocity ( )v MN
2 as follows:

( ) ( )

( ) ( ) ( )

= = +

= + = +

v G r G r

r

t
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r
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2 2
4

3
2

4

3
2
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2 3
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2 N
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vac N
2

where we use the definition of M r4

3
3. Now, let

/M M 1M be a (small) constant fraction of energy
corresponding to the perturbation Δρ, and let rM ≡ 2GM = θMt
be the radius of the mass-related event horizon. Thus,

( )= = =
GM

r

t

r

t

r

GM

r

2
:
2

. A3M
t

t

M 0 0

0

Therefore, the quotient / /=M r M r0 is as comoving
as / /=r t r t0.
Moreover, the background metric of the Universe has a

Ricci tensor with components =R 0u
00 and =R R gij

u
u ij

1

3
(R. Monjo 2017; R. Monjo & R. Campoamor-Stursberg 2020).
Since Rhyp = −6/t2, the Einstein field equations become locally
converted to (R. Monjo 2024b)

( )

= =

= =

P R Rg R Rg
t

g

P R Rg R Rg
t

g

1

2

1

2

3

1

2

1

2

1
,

A4

ij ij ij ij ij ij

00 00 00 00 00 2 00

2

where κ = 8πG and Pμν are the stress-energy tensor
components. Notice that, for small variations in time
Δt = t − t0 ≪ t0 ≡ 1, the last terms (3/t2 and 1/t2) are
equivalent to consider a “cosmological (almost) constant” or
dark energy with equation of state w = −1/3 (varying as a−2).

Appendix B
HMG

B.1. Hyperconical Universe and Its Projection

This Appendix reviews the main features of relativistic
MOND-like modified gravity derived from the hyperconical
model and referred to here as HMG (R. Monjo 2017, 2018, 2023;
R. Monjo & R. Campoamor-Stursberg 2020, 2023). LetH4 be a
(hyperconical) manifold with the following metric:

( )

( )

+g dt kr
t

t

dr

kr
r d

r tdr dt

t kr

1
1

2

1
, B1

hyp
2 2

2

0
2

2

2
2 2

0
2 2
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where /=k t1 0
2 is the spatial curvature for the current value

t0 ≡ 1 of the age t of the Universe, while a(t) ≡ t/t0 is a linear
scale factor, r t0 is the comoving distance, and Σ
represents the angular coordinates. Both the (Ricci) curvature
scalar and the Friedmann equations derived for k = 1 are
locally equivalent to those obtained for a spatially flat
(KFLRW = 0) ΛCDM model with linear expansion (R. Monjo
& R. Campoamor-Stursberg 2020). In particular, the local
curvature scalar at every point (r 0) is equal to
(R. Monjo 2017)

( )/= = = =R
t

R
6

, B2K a t thyp 2 FLRW 0, 0

as for a three-sphere of radius t. This is not accidental because,
according to R. Monjo & R. Campoamor-Stursberg (2020), the
local conservative condition in dynamical systems only
ensures internal consistency for k = 1.
Although Equation (B1) is suitable for use, observers do not

directly measure the shift and lapse terms, which produce
apparent radial inhomogeneity in the comoving distance
(R. Monjo 2017). This spatial inhomogeneity can be
assimilated as an equivalent acceleration by applying some
“flattening” or spatial projection. The simplest way to remove
radial inhomogeneity (and thus measure fictitious acceleration)
is to apply a locally conformal projection with radial
distortion. In particular, for small regions, a final intrinsic
comoving distance r̂ can be defined by an α-distorting
stereographic projection (R. Monjo 2018; R. Monjo &
R. Campoamor-Stursberg 2023),

( )ˆ

ˆ
( )

( )

( )

=

=

r r

t t

,

,
B3

r

t

1

1

r

r

0

0

where ( ) ( )/= r r tsin 1
0 is the angular comoving

coordinate, ( )0, 10
1 is a projection factor, and α = 1/2

is a distortion parameter, which is fixed according to
symplectic symmetries (R. Monjo & R. Campoamor-Stursb-
erg 2023). Equation (B3) can be interpreted as a dynamical
embedding map rather than an arbitrary change of coordinates.
Because it rescales the lapse function, it modifies the effective
gtt experienced by observers confined to the intrinsic hypersur-
face (Equation (B1)), giving rise to an apparent acceleration.
Locally, for empty spacetimes, it is expected that γ0 ≈ 2
(Proposition B.1), which is compatible with the fitted value of

= +1.60 0.2
0.4 when Type Ia supernova observations are used

(R. Monjo & R. Campoamor-Stursberg 2023). In summary, the
projection factor γ0 depends on a projective angle γsys such
that ( )/= cos 10 sys sys , where γ0 = 2 corresponds to a
total empty projective angle of γsys ≈ π/3, and γ0 = 1 is the
minimum projection angle allowed by the causality relation-
ship of the arc length γ0t0. Therefore, the projective angle for
an empty or almost empty neighborhood is approximately
γnei = (0.284 ± 0.049)π ≲ π/3 = : γU.

Proposition B.1. Local projection There exists a unique local
1/2-distorting stereographic projection of the hyperconical
Universe from its five-dimensional ambient space.

Proof. Let R 0 be a scale factor and let R RF :Q
5 be

a family of 1/2-distorting stereographic projecting beams with
( ) RFQ

5 parameterized such as ( ) ( ) ( )= = rF Q t t u1 , ,Q

and ( ) ( ) ( )=F Q u0 0 0, 0 ,Q 0 with u0 ≡ −t0 and defined as
follows:

ˆ
ˆ
ˆ ( )

( )
=
=
= +

F
t t

r r
u u u u

. B4Q

0 0

This transformation, given by = =r e er t sinr r0

^ ^e er t sinr r0 , is performed for the angles ˆ , preserving
the direction er . When the points are projected on the hyperplane
ˆ =u t0, the solution for the distorted stereographic projection is
given by some λ = λs(t, γ):

( )
( )

( ) ( )= + + =
+

B5

t t t t tcos ,
2

1 cos
.s s

t

t

0 0 0

0

Expanding the difference between t < t0 and t0 in terms of the
angle γ, it is obtained that

( ) ( )= +
t t

t
O , B60

0

2

and the projection parameter for γ ≪ 1 approaches

( ( ) )
( ( ) )

( )
+

t ,
2

1 1 cos

1

1
. B7s

2

aaa ■
Moreover, using the global relationship t(γ) proposed by

R. Monjo & R. Campoamor-Stursberg (2023) to consider the
domain limit given by the angle γU = π/3 in empty spaces, the
maximum causal difference allowed is t0λ−1 − t� t0;
therefore, it can be assumed as follows:

( )t t

t
cos cos , B8

U
U

0
1

0 0

with projected angle = 20 cos

2

3
U

U
for empty spaces.

Isolating t from the above expression, the scale factor is now

( )2 cos

1

1

1
. B9s

0 0

B.2. Perturbation by Gravitationally Bound Systems

In the case of an (unperturbed) homogeneous Universe, the
linear expansion of H4 can be expressed in terms of the
vacuum energy density ρvac(t) = 3/(8πGt2), where G is the
Newtonian gravitational constant, and thus ρvac(t0) = ρcrit.
That is, one can define an inactive (vacuum) mass or energy

( ) =M r rvac
4

3
3 for a distance equal to r with respect to the

reference frame origin. Using the relationship between the
coordinate r and the comoving r , the spatial dependence of the
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metric is now

( ) ( ) ( )= = = =
Mr

t

r

t

G r

r

G r

r
v r

2 2
, B10

2

0
2

2

2

vac
4

3
3

H
2

where vH(r) ≡ r/t is the Hubble speed, which coincides with
the escape speed of the empty spacetime with vacuum density
ρvac.

Definition B.1. Mass of perturbation. A perturbation of
the vacuum density ρvac → ρM(r) ≡ ρvac + Δρ, with an
effective density Δρ at r > 0, leads to a system mass

( )M r rsys
4

3
3 enclosed at a radius r, which is likewise

obtained by perturbing the curvature term,

( )
( )

( ) ( )

( )

+ = +
r

t

r

t r

r

t

GM r

r
v r v r

2
2 ,

B11

2

2

2

sys
2

2

2

sys
H
2

N
2

with a radius of curvature tsys(r) ∈ (2GMsys, t], where
( ) ( )/v r GM r rN sys is the classical Kepler–Newton orbital

speed (Equation (A2)).
An approximation to the Schwarzschild solution can

be obtained in a flat five-dimensional ambient space from
the hyperconical metric. For example, let ( )rt u, ,
( ) Rt x y z u, , , , 1,4 be Cartesian coordinates, including an extra
spatial dimension u in the five-dimensional Minkowski plane. As
used in hyperconical embedding, u t tcos is chosen to
mix space and time. Now, it includes a gravity field with
system mass Msys integrated over a distance r̂ such that

ˆ

ˆ+sin r

t

r

t

GM

r
2 22

2

2

2

sys . Notice that r is a coordinate related
to the position considered, in contrast to the observed radial
distance r̂ or its comoving distance ˆ ( ) ˆ/r t t r0 . With this, the
first-order components µ̂g of the metric perturbed by the mass
are
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where the hyperconical model is recovered taking Msys = 0.
Therefore, assuming linearized perturbations of the metric
ˆ ˆ ˆ= +µ µ µg g hback with ˆ ˆµ µ =g g M

back
0sys
, we can find a local

approach to the Schwarzschild metric perturbation h|Schw as

follows (R. Monjo 2023):

ˆ [ ( ˆ ˆ )]

ˆ
ˆ

ˆ
ˆ ˆ

( )

+

× + +

+

µ µ µ
µg g g dx dx

GM

r
dt

t

t

GM

r
dr r d

:

1
2

1
2

neglected shift , B12

Schw
back

sys 2
2

0
2

sys 2 2 2

which is also obtained for µ̂g when ˆ/r t 1, that is,
[ ˆ ] ˆ( ˆ )/ µg glim r t 0 Schw0

. The shift term is neglected in
comparison to the other terms, especially for geodesics. Our
result is aligned to the Schwarzschild-like metric obtained by
A. Mitra (2014) for FLRW metrics, specifically for the case
of K = 0.
In summary, the first-order approach of the five-dimension-

ally embedded (four-dimensional) hyperconical metric
(Equation (B12)) differs from the Schwarzschild vacuum
solution by the scale factor /t t2

0
2 and a negligible shift term.

Therefore, the classical Newtonian limit of GR is also
recovered in the hyperconical model, because the largest
contribution to gravitational dynamics is given by the temporal
component of the metric perturbation htt. That is, the linearized
Schwarzschild geodesics are given by

( )
µ

µd x

d x
h

dt

d

1

2
, B13tt

2

2

2

where ˆ ˆ/h GM r2tt sys .

Appendix C
Modeling Radial Acceleration

C.1. Projective Angles of the Gravitational System

The last Appendix derived a general expression for the
anomalous RAR expected for any gravitational system
according to the projective angles (which depend on the
quotient between orbital speed and Hubble flux) under the
hyperconical Universe framework.
From the analysis of perturbations (Equation (B11)), it is

expected that any gravitational system (Equation (B12)) results
in a characteristic scale ( ( )) ( ) ( )r M r t r rsincs sys sys sys given
by a projective angle γsys ∈ [π/3, π/2) that slightly depends on
the radial distance r and the mass Msys. Unlike gravitational
lensing, a non-null cosmic projection = >cos 00

1
sys

1
sys

is expected for nonconcentrated gravitational systems. In
particular, we assume that the maximum projective angle
(γsys = γcen ≡ π/2, minimum cosmic projection) is produced
by small, dense, and homogeneous gravitational systems,
while the minimum angle (γsys = γU ≡ π/3, maximum
cosmic projection) corresponds to large systems extended
toward an (almost) empty Universe (Figure 3). Since

( ) ( ]t r G M t4 ,sys
2 2

sys
2 2 and ( ) ( ]r M G M t4 ,cs

2 2
sys
2 3

4
2 , the char-

acteristic scale ( )r Mcs
2

sys increases from ( ) ( )= =r M t rcs
2

sys sys
2

G M t4 2
sys
2 2 up to ( ) ( )= = =r M t r t t sincs U

2
sys

3

4 sys
2 3

4
2 2 2 ;

that is, ( ) [ ]rsin , 1sys
2 3

4
.
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Two definitions are useful for describing the behavior of the
characteristic scale rcs. Specifically, let ( )/r tsin csnei

1

( )0, U be the characteristic neighbor angle, and let

( )+
= +

sin

sin

5

6

5

6

1

6
C1U

H
2

2

2
nei

vac nei

vac

nei

vac

be a relative density of the neighborhood matter (ρnei, by
definition for a certain radial distance) with respect to the
vacuum density ρvac = 3/(8πGt2). So, Equation (C1) is
equivalent to /= r tsin sin U cs

5

6
2

nei
2

H
2 2 2.

The relation of γsys with respect to the gravitational mass
and the scale of speeds can be estimated from the following
properties. According to Equation (B11), a gravitational
system perturbs the cosmological geometry with a (squared)
orbital speed of ( ) ( )/v r GM r rN

2
sys higher than the Hubble

expansion speed ( ) /v r r tH
2 2 2, so the projective angle γsys is

given by

( )
( )

( )
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( ) ( ) ( ) ( )

= = +

= +
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2
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2
sys 2
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2
nei

2
N
2

2 2
H
2

H
2 2

N
2

where ( ) /r r r 1cs
2 2 2 is an auxiliary function, and

Equation (C1) is used. On the other hand, the center of the
gravitational system presents a higher density; thus, the cosmic
projection should be minimum due to the maximum projective
angle γcen ≈ π/2, i.e.,

( )
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+ +
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r v r v

1 sin 2
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Figure 3. Conceptual model of the projective angle γsys as a function of the relative geometry (orbital speed vN over the Hubble flux εHvH) for each gravitational
system (black curves) with respect to the maximum background spacetime (red curves). To simplify the scheme, the projection factor cos0

1
sys

1
sys is

graphically represented by an auxiliary angle f, defined as the arc between the hyperplane of the gravitational system (dashed black line) and the maximum
background hyperplane (dashed red line) curved by the dominant system (purple), such that γsys = π/2 − f. The distance scale r is represented by tsys
(Equation (B11)). In addition to the cosmic scale, six gravitational systems are considered: (i) a small system (e.g., solar system), (ii) an early-type galaxy with a
dominant nuclear bulge, (iii) a typical spiral galaxy, (iv) a late-type spiral galaxy, (v) an irregular cluster, and (vi) a homogeneous cluster. The dominant objects
(purple text) are the star for a small system, the galactic center for galaxies, and the brightest galaxy for a given cluster.
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Notice that for the limit when =sin sin U
2

nei
2 3

4
or,

equivalently, tsys ≈ t, it is required that H
2 1

6
and vN ≈ 0.

The dependency of γsys on the auxiliary function β(r) can be
removed by taking the quotient of ( )rsin sin U

2
sys

2

(Equation (C2)) over sin sin U
2

cen
2 (Equation (C2)).

Therefore, it is expected that the projective angle γsys of
every gravitational system presents a general relation similar to

( ) ( ) ( )
( ) ( )

( )
+

r v r v r

v r v r

sin sin

sin sin

2

2
, C4

U

U

2
sys

2

2
cen

2
N
2

H
2

H
2

N
2

H
2

H
2

with two free parameters, H
1

6
and γcen ≈ π/2. Notice that

the maximum projective angle (i.e., γsys = γU) is found when
the gravitational and Hubble fluxes are in equilibrium,
modulated by the parameter εH. On the other side, for galaxies
and small gravitational systems, the Kepler–Newton orbital
speed vN

2 is much larger than the Hubble flux. Thus, the
projective angle γsys(r) ≡ γgal(r) can be estimated by the
following galactic relation (R. Monjo 2023):

( ) ( )
( ) ( )

( )
+

r v r

v r v r

sin sin

sin sin

2

2
, C5

U

2
sys

2
nei

2
cen

2
N
2

N
2

H
2

H
2

with γnei ∼ γU ≈ π/3 and one free parameter, which is 1H
2

if γcen = π/2 is fixed or γcen ≲ π/2 if εH = 1 is fixed. Thus,
two limiting cases are /sin 1 2sys sys when the
orbital speed is vN(r) ≫ εHvH(r), while sin sys

/33

2 sys when the orbital speed is vN(r) ≪
εHvH(r), which is the lower limit of the neighborhood
projective angle (γnei).
On the other hand, radial accelerations (without regular

orbits) of large-scale objects such as galaxy clusters are
expected to present opposite behavior with respect to
Equation (C5), since the gravitational center is not a galactic
black hole but is close to a dominant galaxy (the brightest
cluster galaxy; R. De Propris et al. 2020; D. Shi et al. 2024),
and the neighborhood now corresponds to the large-scale
environment of the clusters themselves. Therefore, the
projective angle γsys of the largest structures is approximated
by the following cluster relation:

( ) ( )
( ) ( )

( )
+

r v r

v r v r

sin sin

sin sin

2

2
, C6

U

2
cen

2
sys

2
cen

2
N
2

N
2

H
2

H
2

where ( )v rN
2 is the orbital speed profile of the cluster and

γcen ≲ π/2 is the averaged projective angle for its central
object; now we expect that the projective angle for clusters is a
variable γsys(r) ∈ [π/3, π/2) but close to the neighborhood
value γnei ∼ γU = π/3.
However, a perfectly homogeneous distribution of low-

density galaxies in a cluster will lead to a balance between the
different galaxies that form it, so the cluster radial acceleration
will be approximately zero (vN ∼ 0) and anomalies are not
expected. Thus, the projective angle will be γsys ≈ π/2 for
both Equations (C4) and (C6); that is, no significant
geometrical differences are expected between the external
and internal parts of the cluster (see the last case of Figure 3).
Conversely, for irregular clusters (vN ∼ εHvH with εH ≫ 1 in
Equation (C4) or ( )v v r2 N

2
H
2

H
2 in Equation (C6)), the radial

acceleration will be very similar to the cosmic expansion (with

angle γsys = γU = π/3). Notice that, for very inhomogeneous
systems (vN ≫ εHvH), Equation (C4) recovers the behavior of
high-density galaxies (Equation (C5)) with γsys(r) = γgal(r).
Moreover, for ( )v v2 0,N

2
H
2

H
2 , Equation (C4) behaves in a

similar way as in Equation (C6), as expected.

C.2. Cosmological Projection of the Schwarzschild Metric

Henceforth, the constant of light speed c ≡ 1 will not be
omitted from the equations so we can compare with real
observations later. Let λ be the scaling factor of an α-
distorting stereographic projection (Equation (B3)) of the
coordinates ( ) ( )= Rr u ct ct, sin , cos 2, used to sim-
plify the spatial coordinates ( ) Rr u, 4 due to angular
symmetry. For nonempty matter densities, we contend that
γsys depends on the orbital speed of the gravity system
considered. However, the first-order projection can be
performed by assuming that the dependence on distances is
weak (i.e., with = cos0

1
sys

1
sys being approximately

constant for each case). Thus, the stereographic projection is
given by the scale factor λ such as (see, for instance,
R. Monjo 2023; R. Monjo & R. Campoamor-Stursberg 2023)

( )= +
r

t c

1

1
1 , C7

0 0
0

where [ ( )] ( )/ /= r t c r t csin 1
0 0 is the angular position of

the comoving distance ( )/=r t t r0 . Therefore, the projected
coordinates are

( )
( )

ˆ

ˆ
( )

= +

= +

r r r

t t t

1 ,

1 .
C8

r

t c

r

t c

0 0

0 0

At a local scale, the value of α = 1/2 is required to guarantee
consistency in dynamical systems (R. Monjo & R. Campoam-
or-Stursberg 2023), but the parameter α is not essential in this
work, since only the temporal coordinate is used in our
approach below.
Applying this projection to the perturbed metric

(Equation (B12)) and obtaining the corresponding geodesics,
it is easy to find a first-order approach of the cosmic
contribution to modify the Newtonian dynamics in the
classical limit, as shown below (Section C.3).

C.3. First-order Perturbed Geodesics

Assuming that the projection factor = cos0
1

sys
1

sys is
approximately constant, the quadratic form of the projected
time coordinate (Equation (C8)) is as follows:

ˆ -

( )

+ + +dt
r

t c

tr

t c
dt1

2 2
higher order terms.

C9

2

0 0 0 0

2

By using these prescriptions, our Schwarzschild metric
(Equation (B12)) is expressed in projected coordinates (ˆ ˆ )t r,
or in terms of the original ones ( )t r, ; that is,
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ˆ ˆ ˆ ˆ= =µ
µ

µ
µg g dx dx g dx dxSchw , with

ˆ ( )̂
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ˆ
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g
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c r
c dt
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t
r d

g c dt g dx
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. C10tt ii
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sys

2
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2
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Finally, this is locally expanded up to first-order perturbations
in terms of γ0. Notice that, according to Equation (B12), the
background terms /r t2

0
2 do not produce gravitational effects,

and thus they can be neglected. Here, one identifies a projected
perturbation htt of the temporal component of the metric,
gtt = ηtt + htt = 1 + htt, with ημν = η μν = diag
(1, −1, −1, −1). Thus, if Msys is assumed to be mostly
concentrated in the central region of the gravitational system,
the first-order perturbation of the temporal component of the
metric is

( )
( )+ +h

GM r

rc

r

tc c

r

t

t

t
r

2
1

2
, C11tt

sys

2
0 0 0

where the spatial projection ˆ ( ( ))/+r r ct r1 0 is considered
(from Equation (C8)), and the relation between comoving
distance r and spatial coordinate r is also used ( / /=r t r t0 ).
Under the Newtonian limit of GR, the largest contribution to

gravity dynamics is given by the temporal component of the
metric perturbation htt. That is, Schwarzschild geodesics
(Equation (B13)) produce both time-like and space-like
acceleration components from the metric perturbation htt,

ˆ ( )= +
d s

c dt x
h e

x
h e a e a e

1

2

1

2
: , C12tt t i tt i

t
t

i
i

2

2 2 0

where the four-position ( ) = + =ŝ c t x c t e x e, :i
t

i
i

+t x Rc 1,3 is assumed, with canonical basis {et, e1, e2, e3}
and dual basis {e t, e1, e2, e3}. For a freely falling particle with
central-mass reference coordinates ( )= = = Rx rx e r, 0, 0i

i
3, it

experiences an acceleration of about
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2

where rM ≡ 2GMsys/c
2 ≪ r is the Schwarzschild radius, which

is neglected compared to the spatial position r. That is, an
acceleration anomaly is obtained mainly in the spatial
direction, about | | /a a c tN 0

1 for a ≡ a rer. However,
the total acceleration also has a time-like component, that is, in
the direction et. In particular, for a circular orbit with radius r,
and taking into account the nonzero temporal contribution to
the acceleration in the hyperconical Universe with radius ct

(R. Monjo 2023), the total centrifugal acceleration is

( ) ˆ
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+ +

v

c
e cte e x e e

d s

c dt
ct

r

c t
e

GM

c r ct

x x

r
e

1
, C14

s t
t i

i
i

t

i
i

i

2

2

2

2 2
0

2 2

sys

2 2
0

where es is an effective space-like direction (||es||2 =
ese

s = −1), while the absolute value of the velocity is given by
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which satisfies two well-known limits of Newtonian and
Milgromian dynamics (Equation (C15) right), where a0 is
Milgrom’s acceleration parameter and Msys = Msys(r) is the
total mass within the central sphere of radius r. Finally, the
velocity curve v = v(r) can be reworded in terms of the
Newtonian circular speed ( )/v GM r rN sys . Therefore, the
predicted MDAR for rotation curves is

( )

+ +
v

v a

c

t

a

a a

c

t
1

1 2
1

1 2
,

C16

C

N

2

N 0 N N 0

where aC = v2/r is the total radial acceleration and
aN = GMsys/r

2 is the Newtonian acceleration. However, the
absence of rotation in galaxy clusters leads to a radial
acceleration similar to Equation (C13). In any case, the
projection factor = cos0

1
sys

1
sys depends on the projective

angle γsys, which can be estimated from the galaxy cluster
approach (Equation (C6)) or the general model
(Equation (C4)), respectively, as follows:

( ) (

) ( )
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sin sin sin
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2

2
, C18
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2

sys
2 2
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2
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2
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2
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2
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2
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2
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2

where γcen can be fixed to γcen = π/2 to test the one-parameter
(εH) general model of Equation (C18), while this study
assumes that {εH, γcen} are free in our two-parameter model
for clusters (Equation (C18)). Finally, the empty projective
angle is usually set as γU = π/3 (R. Monjo &
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R. Campoamor-Stursberg 2023), which produces a projection
factor of /cos 1 2U U

1 .

C.4. Individual Fitting

Observed data on the RAR of 10 clusters (0.0328 < z
< 0.0899) were collected from the study performed by P. Li
et al. (2023). Individually, fitting of Equation (C17) for the
anomaly between the total spatial acceleration and Newtonian
acceleration (Equation (C13)) leads to a square root of the
relative density of about = +38H 11

29 (90% confidence level;
Figure 4). All these results are obtained by fixing the constants
γU = π/3 and γcen = π/2. The general model
(Equation (C18)), with only one free parameter (εH), gave
good results for 8 of the 10 clusters, showing difficulties in
fitting the more available data from the A2029 and A2142
clusters (Table 1). If two parameters are considered (εH, γcen),
the results considerably improve, except for the A2029 cluster,
which requires changing cos 1U U

1 to be compatibly
fitted to the observations.
The same two-parameter (εH, γcen) general model

(Equation (C18) with γU = π/3) was also applied to the 60
high-quality galaxy rotation curves, obtaining an acceptable result
for all of them. The case of one parameter (εH free when
γcen = 0.48π is set) showed a slightly larger chi-square statistic
and p-value, but these are also acceptable for all of them.
Moreover, an empirical relationship between the single parameter
εH and the square root of a relative density is found, which
approximately defines an identity ( )/rH

2
typ vac in units of

vacuum density ρvac ≡ 3/(8πGt2) for an observed density ρ(rtyp)
that is defined at a typical neighborhood distance of approxi-
mately 4 times the maximum radius (rtyp ≈ 4 × rmax, fitted at
R = 0.85, p-value < 0.0001; Figure 5, left) for each galaxy
rotation curve and equal to the minimum radius (r rtyp min) for
the data of each cluster. This typical distance corresponds to
rtyp ≈ 50–200 kpc. A more general empirical relationship is
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Figure 4. Observational constraints on the proposed models fitted to RAR data of the 10 galaxy clusters considered (P. Li et al. 2023). Left: best values (red points)
and uncertainty area (green shaded regions showing the 1σ confidence level) of the two parameters (εH and γcen; see Table 1) used in fits to individual clusters
according to the specific approach (Equation (C17) is used in Equation (C13)). Right: best fit of the single free parameter (εH) used in the general model
(Equation (C18) used in Equation (C13)), with fixed γcen = 0.48π. In both cases (one or two free parameters), the projective angle of the neighborhood (γU) was
fixed to γU = π/3. Notice that cluster A2029 did not pass the χ2 test even with the two-parameter model. However, it passed the test for γU = 0.235π, corresponding
to cos 1U U

1 .

Table 1
Fitting Parameters for the Clusters

Name (Data) General Model Specific Model for Clusters

εH χ2 p-val. εH γcen/π χ2 p-val.

A0085 (17) +40 5
6 0.04 +31 4

5 +0.474 0.009
0.017 <0.01

A1795 (4) +55 9
14 <0.01 +39 4

6 +0.499 0.006
0.001 <0.01

A2029 (32) +52 20
40 >0.95 +37 10

15 +0.500 0.002
0 >0.95

A2142 (31) +46 15
15 >0.95 +41 2

4 +0.483 0.002
0.003 <0.01

A3158 (7) +53 17
39 <0.01 +37 8

18 +0.491 0.030
0.009 <0.01

A0262 (3) +96 19
32 0.54 +67 6

10 +0.500 0.005
0 0.57

A2589 (3) +60 14
37 0.36 +41 4

10 +0.500 0.013
0 0.47

A3571 (3) +57 12
22 0.02 +39 6

8 +0.495 0.036
0.005 0.14

A0576 (3) +44 11
22 0.06 +31 6

8 +0.493 0.023
0.007 0.13

A0496 (5) +50 9
16 0.04 +33 4

6 +0.500 0.028
0 0.14

Note. Individual fitting of Equation (5) to each cluster according to the general
model (Equation (6)) with one parameter (ε) and with the specific model for
clusters (Equation (5) with two parameters, namely, ε and γcen). The p-value is
given for the lowest χ2.
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found for ( ( ) )/= rH
2 1

6 typ vac with = +0.92 0.12
0.08

(R = 0.86, p-value < 0.0001).
Finally, when the two-parameter HMG model is considered

for galaxies, an additional relationship is found between εH and
γcen:

( ) ( )
( )

= ±+cos cos 0.4610 0.020 0.002 ln
C19

cen 0.0014
0.0013

H

for 1� εH < 400, with a Pearson coefficient of R = 0.80
(p-value < 0.0001; Figure 5, right).
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RAR data of 10 clusters (circles). Left: constraint on the one-parameter HMG model for galaxies, with fixed γcen = 0.48π and free εH. This shows an (almost)
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