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This work addresses the design of semi-implicit numerical schemes that are fully exactly well

balanced for the two-layer shallow water system, meaning that they are capable of preserving 
every possible steady state, and not only the lake-at-rest ones. The proposed approach exhibits 
better performance compared to standard explicit methods in low-Froude number regimes, where 
wave propagation speeds significantly exceed flow velocities, thereby reducing the computational 
cost associated with long-time simulations. The methodology relies on a combination of splitting 
strategies and relaxation techniques to construct first- and second-order semi-implicit schemes 
that satisfy the fully exactly well-balanced property.

1. Introduction

Our main interest is the design of numerical schemes with good properties for the approximation of systems of conservation laws 
in which, in addition to a flux and a source term, non-conservative products may appear. In particular, we focus our attention on the 
two-layer shallow water system.

The two-layer shallow water system expresses the evolution in space 𝑥 ∈ ℝ and time 𝑡 ≥ 0 of a fluid composed of two layers of 
immiscible liquids with densities 𝜌1 < 𝜌2. This model is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡ℎ1 + 𝜕𝑥(ℎ1𝑢1) = 0,

𝜕𝑡(ℎ1𝑢1) + 𝜕𝑥

(
ℎ1𝑢

2
1 + 𝑔

ℎ21
2 

)
+ 𝑔ℎ1𝜕𝑥ℎ2 = −𝑔ℎ1𝜕𝑥𝑧,

𝜕𝑡ℎ2 + 𝜕𝑥(ℎ2𝑢2) = 0,

𝜕𝑡(ℎ2𝑢2) + 𝜕𝑥

(
ℎ2𝑢

2
2 + 𝑔

ℎ22
2 

)
+ 𝑔

𝜌1
𝜌2
ℎ2𝜕𝑥ℎ1 = −𝑔ℎ2𝜕𝑥𝑧,

(1)
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Fig. 1. Sketch of the two-layer shallow water: ℎ1 , ℎ2 water heights, 𝑧 topography, 𝜂2 the interface between the fluids and 𝜂1 the free surface. 

where ℎ1 ≥ 0 and 𝑢1 denote the depth and velocity of the upper layer, and ℎ2 ≥ 0 and 𝑢2 are concerned with the lower one (see 
Fig. 1). Moreover, 𝑧 is the bottom topography and 𝑔 is the gravity constant. We shall denote by 𝑞𝛼 = ℎ𝛼𝑢𝛼 the discharge for each 
layer. The free surface is defined as 𝜂1 = ℎ1 + ℎ2 + 𝑧 and 𝜂2 = ℎ2 + 𝑧 corresponds to the interface between both fluids. The first 
and third equations indicate the conservation of mass, while the second and fourth equations correspond to the momentum for each 
layer. A global momentum equation can be obtained by multiplying the second equation by 𝜌1, the third one by 𝜌2 and adding them 
together. In fact, that global momentum equation is conservative for flat bottom topography. The two-layer shallow water system is 
derived by depth averaging the incompressible Navier-Stokes equations under the assumption of hydrostatic and constant density for 
each layer.

It is important to notice the presence of non-conservative products that couple the two layers whose treatment is subject to 
nontrivial difficulties (see [23] for instance). As it will be seen below, another difficulty related to the two-layer system is the possible 
loss of hyperbolicty. In addition, the eigenvalues cannot be expressed by means of easy explicit formulas in general.

These equations can also be reformulated in a more compact way as

𝜕𝑡U + 𝜕𝑥F(U) + B(U)𝜕𝑥U = S(U)𝜕𝑥𝑧,

where U = (ℎ1, ℎ1𝑢1, ℎ2, ℎ2𝑢2)𝑇 is the vector of unknowns, and

F(U) =

⎛⎜⎜⎜⎜⎜⎜⎝

ℎ1𝑢1

ℎ1𝑢
2
1 +

𝑔ℎ21
2 

ℎ2𝑢2

ℎ2𝑢
2
2 +

𝑔ℎ22
2 

⎞⎟⎟⎟⎟⎟⎟⎠
, B(U) =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 𝑔ℎ1 0
0 0 0 0
𝑟𝑔ℎ2 0 0 0

⎞⎟⎟⎟⎠ ,
and

S(U) =
⎛⎜⎜⎜⎝

0
−𝑔ℎ1
0

−𝑔ℎ2

⎞⎟⎟⎟⎠
are the flux function, the coupling terms matrix and the source term respectively. It will be also useful to write the equations in the 
form of a quasi-linear system with a source term

𝜕𝑡U + A(U)𝜕𝑥U = S(U)𝜕𝑥𝑧,

where

A(U) = 𝜕F(U)
𝜕U

+ B(U).

A few computations show that the characteristic equation of A(U) is given by

(𝜆2 + 𝑢21 − 𝑐
2
1 − 2𝜆𝑢1)(𝜆2 + 𝑢22 − 𝑐

2
2 − 2𝜆𝑢2) = 𝑟𝑐21𝑐

2
2 ,

where 𝑟 =
𝜌1
𝜌2

denotes the ratio of the densities and 𝑐𝑗 =
√
𝑔ℎ𝑗 , the sound speed of each layer. In particular, it is easy to see that we 

have a null eigenvalue when the so called composite Froude number, 𝐺, satisfies

𝐺2 = 𝐹 2
1 + 𝐹 2

2 − (1 − 𝑟)𝐹 2
1 𝐹

2
2 = 1,

where 𝐹𝑗 is given by
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𝐹 2
𝑗 =

𝑢2
𝑗

(1 − 𝑟)𝑐2
𝑗

,

which are usually called the internal Froude numbers of each layer. A flow is said to be subcritical when 𝐺2 < 1, and supercritical 
when 𝐺2 > 1. In general, for 𝑟 > 0, it is not possible to provide an easy expression for the eigenvalues, although they can be analytically 
computed using Ferrari’s method. If 𝑟 = 0, it is clear that the eigenvalues correspond those of two shallow water system, one for each 
layer separately. Thus, if 𝑟 ≈ 0, the two layers of fluids behave almost independently. However, we are interested in situations in 
which 𝑟 ≈ 1, which often happen in geophysical flows. In this case, the following first-order approximation of the eigenvalues is given 
in [55]:

𝜆±ext =
ℎ1𝑢1 + ℎ2𝑢2
ℎ1 + ℎ2

±
√
𝑔(ℎ1 + ℎ2),

𝜆±
int

=
ℎ1𝑢1 + ℎ2𝑢2
ℎ1 + ℎ2

±

√
𝑔(1 − 𝑟)

ℎ1ℎ2
ℎ1 + ℎ2

(
1 −

(𝑢1 − 𝑢2)2

𝑔1(ℎ1 + ℎ2)

)
.

Then, based on these first order approximations, it is clear that complex internal eigenvalues will appear when

(𝑢1 − 𝑢2)2

𝑔1(ℎ1 + ℎ2)
> 1,

and thus we would lose the hyperbolicity character. This concerns scenarios where the two layers mix, leading to the development 
of Kelvin-Helmholtz instabilities. In real-world situations, such mixing would result in partial energy dissipation. To replicate this 
effect in models, friction can be incorporated into the mathematical framework to prevent interface disturbances from escalating and 
causing inaccuracies in numerical simulations (see [17]). Clearly, in these cases, a more sophisticated model would be necessary. 
During numerical experiments, the occasional loss of hyperbolicity might be acceptable, provided it does not significantly deviate from 
the true solution. For additional details on the two-layer shallow water model and issues related to hyperbolicity loss see references 
[17,18,23,16] and the references therein.

As highlighted in [40], despite these challenges, the two-layer system remains a popular and effective numerical tool for various 
applications, such as analyzing the flow dynamics in the Strait of Gibraltar—where two streams of differing densities from the 
Atlantic Ocean and the Mediterranean Sea interact (see [19], for example)�-and modeling tsunami generation caused by underwater 
landslides, which can be approximated as viscous fluids (see [49,31]).

Fully exactly well-balanced property. It is well known that well-balancing is one of the good properties required for any numerical 
scheme designed to approximate the solution of the systems of balance laws with or without non-conservative products, which is the 
case we are dealing with. This property means that the scheme should be able to preserve the stationary solutions of the system, or 
at least a subset of them. This avoids spurious oscillations in the numerical approximations when the solutions are close to a steady 
state.

In the two-layer shallow water system, the stationary solutions (ℎ𝛼 )𝑒 and (𝑢𝛼)𝑒 for each layer 𝛼 are computed by solving the 
ordinary differential equations⎧⎪⎪⎨⎪⎪⎩

𝑑

𝑑𝑥
(ℎ𝛼𝑢𝛼)𝑒 = 0,

𝑑

𝑑𝑥

(
ℎ𝛼𝑢

2
𝛼 + 𝑔

ℎ2𝛼
2 

)𝑒
+ 𝑔𝑟𝛼ℎ𝑒𝛼𝜕𝑥ℎ

𝑒
𝛽
= −𝑔ℎ𝑒𝛼 𝜕𝑥𝑧,

(2)

with {𝛼, 𝛽} = {1,2} and 𝑟𝛼 = (𝛼 − 1)𝑟+ 2 − 𝛼, which is equivalent to

⎧⎪⎨⎪⎩
(ℎ𝛼𝑢𝛼)𝑒 = 𝐶1,𝛼 ,

(𝑢𝑒𝛼)
2

2 
+ 𝑔(𝑟𝛼ℎ𝑒𝛽 + ℎ

𝑒
𝛼 + 𝑧) = 𝐶2,𝛼 ,

(3)

where 𝐶1,𝛼 and 𝐶2,𝛼 are four real constants. A particular case correspond to the so-called lake-at-rest steady states, given by{
𝑢𝑒𝛼 = 0, 𝛼 = 1,2,
ℎ𝑒1 = 𝑐𝑠𝑡., ℎ𝑒2 + 𝑧 = 𝑐𝑠𝑡.

Although various definitions of well-balanced schemes can be found in the literature, in this work we adopt those provided in [36]. 
Accordingly, a scheme is referred to as exactly well-balanced for a steady state if its exact cell averages (or their approximations using 
a quadrature formula) are preserved by the scheme, whereas it is called well-balanced when it preserves a discrete approximation of 
them. Moreover, if the scheme preserves every possible steady state, we say that it is fully (exactly) well-balanced.

Many papers deal with the study of well-balanced or fully well-balanced schemes. To name just a few, we refer to [3,38,51,33, 
32,6,1,29,2,8] for schemes that only preserve the lake-at-rest steady states, and to [37,10,58,57,4,5,22,48,53,7] for schemes that 
preserve all the stationary solutions.
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Other works dealing with important aspects concerning the two-layer problem are those of [23,20,21,41,45,47,54,52]. To the 
best of our knowledge, there is no explicit/implicit solver that is exactly fully well-balanced for the two-layer shallow water system.

Splitting and numerical scheme. In line with the philosophy of previous works [25--28], [14], [46], [12], [13], we adopt an operator 
splitting strategy to solve (1). The idea is to split the pressure and transport terms of the model, leading to an acoustic system and a 
transport one.

Our numerical scheme will consist in calculating 𝐔 by performing first an acoustic step and then the transport one. More precisely 
and adopting the usual notations in finite volume schemes, we start by defining the constant space step Δ𝑥, the time step Δ𝑡, the 
mesh interfaces 𝑥𝑖+1∕2 = 𝑖Δ𝑥 for 𝑖 ∈𝑍 and the intermediate times by 𝑡𝑛 = 𝑛Δ𝑡 for 𝑛 ∈𝑁 . Then, we denote by 𝐔𝑛

𝑖
an approximation 

of the average value of the unknown 𝐔 on the mesh cell (𝑥𝑖−1∕2, 𝑥𝑖+1∕2) at time 𝑡𝑛, and 𝐔𝑛 the vector made of all the 𝐔𝑛
𝑖
, for 𝑖 ∈𝑍

(for 𝑛 = 0, 𝐔0
𝑖

is the average on the 𝑖-cell of a given initial condition). Our numerical method is thus composed of two stages:

1. Update 𝐔𝑛 to 𝐔𝑛+1− by solving the acoustic system, which will be done either explicitly or implicitly.

2. Exploit 𝐔𝑛+1− to solve the transport system and find 𝐔𝑛+1, which will always be done explicitly.

Note that depending on how the acoustic system is solved, we will obtain either fully explicit schemes or semi-implicit ones.

Some splitting strategies similar to this one have already been used in works like [39] for sediment transport and [30] for the 
two-layer system. The main contribution of the new splitting proposed here in relation to the one that can be found in [30] is that it 
allows us to obtain a scheme that is, on the one hand, simpler, and on the other hand, fully well-balanced.

Outline. The structure of this paper is outlined as follows: Section 2 is devoted to the acoustic-transport splitting strategy, for which 
the splitting operator is presented, followed by the study of the two splitting steps. As far as the acoustic step is concerned, the 
construction of the numerical fluxes is based on that of a relaxed system associated to the acoustic problem, while the source term 
discretization proposed to obtain the fully exactly well-balanced property is based on the prior construction of stationary solutions. 
Moreover, we address the additional difficulty of the presence of coupling terms between the layers. Section 3 is devoted to the 
description of the fully exactly well-balanced reconstruction operators, and Section 4, to the second order extension of the schemes. 
Finally, in Section 5 different numerical experiments of interest are presented, while in Section 6 some conclusions are drawn.

2. Acoustic-transport splitting

In what follows, we will adopt the acoustic-transport operator splitting strategy described below to solve the two-layer shallow 
water system, keeping in mind the difficulty due to the presence of the coupling terms between the layers.

The idea is to split the different pressure and transport terms of the model, leading to the so-called acoustic system

⎧⎪⎨⎪⎩
𝜕𝑡ℎ1 = 0,
𝜕𝑡(ℎ1𝑢1) + ℎ1𝜕𝑥

(
𝑔ℎ1 + 𝑔ℎ2

)
= −𝑔ℎ1𝜕𝑥𝑧,

𝜕𝑡ℎ2 = 0,
𝜕𝑡(ℎ2𝑢2) + ℎ2𝜕𝑥

(
𝑔ℎ2 + 𝑟𝑔ℎ1

)
= −𝑔ℎ2𝜕𝑥𝑧,

(4)

which also writes for ℎ1, ℎ2 > 0 as

⎧⎪⎨⎪⎩
𝜕𝑡ℎ1 = 0,
𝜕𝑡𝑢1 + 𝜕𝑥

(
𝑔ℎ1 + 𝑔ℎ2

)
= −𝑔𝜕𝑥𝑧,

𝜕𝑡ℎ2 = 0,
𝜕𝑡𝑢2 + 𝜕𝑥

(
𝑔ℎ2 + 𝑟𝑔ℎ1

)
= −𝑔𝜕𝑥𝑧,

(5)

and the transport system

⎧⎪⎨⎪⎩
𝜕𝑡ℎ1 + 𝜕𝑥(ℎ1𝑢1) = 0,
𝜕𝑡(ℎ1𝑢1) + 𝜕𝑥

(
ℎ1𝑢

2
1
)
= 0,

𝜕𝑡ℎ2 + 𝜕𝑥(ℎ2𝑢2) = 0,
𝜕𝑡(ℎ2𝑢2) + 𝜕𝑥

(
ℎ2𝑢

2
2
)
= 0.

(6)

Our numerical scheme will consist in calculating the solution by solving first the acoustic system (5) and then the transport 
system (6).

Note that we are considering the non-conservative formulation in the acoustic step. However, we have compared our results with 
other standard schemes in test 5.1 and no significant differences have been observed. Of course, we cannot expect to converge to the 
same weak solution, but this discussion is out of the scope of this work. In fact, the characterization of weak solutions is one of the 
main challenges concerning the two-layer shallow water equations. Moreover, we have numerically checked that the total mass and 
the total momentum in the flat bottom case are preserved up to machine accuracy.
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2.1. Acoustic step

In the finite volume framework, the key point in the design of a numerical scheme for (5) is the definition of a numerical flux 
function at interfaces to evaluate the pressure terms, as well as a suitable evaluation of the source term 𝑔𝜕𝑥𝑧. In order to address 
these two difficulties sequentially, the preliminary step will be to consider the case of flat topography and define the numerical fluxes. 
Thereafter, the nonflat bottom case will be considered, and a discretization for the source term will be obtained, so we can achieve 
the fully exactly well-balanced property.

2.1.1. Flat topography case
The homogeneous system associated to (5) is

⎧⎪⎨⎪⎩
𝜕𝑡ℎ1 = 0,
𝜕𝑡𝑢1 + 𝜕𝑥

(
𝑔ℎ1 + 𝑔ℎ2

)
= 0,

𝜕𝑡ℎ2 = 0,
𝜕𝑡𝑢2 + 𝜕𝑥

(
𝑔ℎ2 + 𝑟𝑔ℎ1

)
= 0.

(7)

Relaxation approximation. In order to define the numerical fluxes at interfaces to evaluate 𝑔ℎ1 and 𝑔ℎ2, we introduce the following 
relaxation linearization of the previous evolution equations on 𝑢1 and 𝑢2, namely

⎧⎪⎨⎪⎩
𝜕𝑡𝐶1 + 𝑎21𝜕𝑥𝑢1 = 0,
𝜕𝑡𝑢1 + 𝜕𝑥

(
𝐶1 +𝐶2

)
= 0,

𝜕𝑡𝐶2 + 𝑎22𝜕𝑥𝑢2 = 0.
𝜕𝑡𝑢2 + 𝜕𝑥

(
𝐶2 + 𝑟𝐶1

)
= 0,

(8)

where 𝑎1 and 𝑎2 are constants satisfying the subcharacteristic condition given by

𝑎𝑖 ≥
√
𝑔(ℎ1 + ℎ2), 𝑖 = 1,2, (9)

and the relaxation variables 𝐶1 and 𝐶2 are such that

lim 
𝜆→∞

𝐶𝑖 = 𝑔ℎ𝑖, 𝑖 = 1,2.

Note that the subcharacteristic condition is approximately obtained considering the barotropic component of the two-layer shallow 
water system, that behaves like a single-layer shallow water system (see for example [9] and [13]).

The matrix associated to this system is given by

⎛⎜⎜⎜⎝
0 𝑎21 0 0
1 0 1 0
0 0 0 𝑎22
𝑟 0 1 0

⎞⎟⎟⎟⎠ ,
which has eigenvalues

𝜆±
𝐸
= ±

√
𝑎21 + 𝑎

2
2 + 𝑑
2 

,

𝜆±
𝐼
= ±

√
𝑎21 + 𝑎

2
2 − 𝑑
2 

,

where

𝑑 =
√(

𝑎21 − 𝑎
2
2
)2 + 4𝑟𝑎21𝑎

2
2,

and the matrix of eigenvectors is given by

𝐾 =

⎛⎜⎜⎜⎜⎝
𝑎21𝑎

2
2 𝑎21𝑎

2
2 𝑎21𝑎

2
2 𝑎21𝑎

2
2

−𝜆𝐸𝑎22 −𝜆𝐼𝑎22 𝜆𝐼𝑎
2
2 𝜆𝐸𝑎

2
2

𝑎22
(
𝜆2
𝐸
− 𝑎21

)
𝑎22

(
𝜆2
𝐼
− 𝑎21

)
𝑎22

(
𝜆2
𝐼
− 𝑎21

)
𝑎22

(
𝜆2
𝐸
− 𝑎21

)
−𝜆𝐸

(
𝜆2
𝐸
− 𝑎21

)
−𝜆𝐼

(
𝜆2
𝐼
− 𝑎21

)
𝜆𝐼

(
𝜆2
𝐼
− 𝑎21

)
𝜆𝐸

(
𝜆2
𝐸
− 𝑎21

)
⎞⎟⎟⎟⎟⎠
,

where we are denoting 𝜆𝐸 = 𝜆+
𝐸

and 𝜆𝐼 = 𝜆+𝐼 to simplify the notation. The inverse of the matrix of eigenvectors is

𝐾−1 = 1 
2𝑎21𝑎

2
2𝜆𝐼𝜆𝐸 (𝜆

2
𝐸
− 𝜆2

𝐼
)

⎛⎜⎜⎜⎜⎝
𝜆𝐼𝜆𝐸 (𝑎21 − 𝜆

2
𝐼
) −𝑎21𝜆𝐼 (𝑎

2
1 − 𝜆

2
𝐼
) 𝑎21𝜆𝐼𝜆𝐸 −𝑎21𝑎

2
2𝜆𝐼

−𝜆𝐼𝜆𝐸 (𝑎21 − 𝜆
2
𝐸
) 𝑎21𝜆𝐸 (𝑎

2
1 − 𝜆

2
𝐸
) −𝑎21𝜆𝐼𝜆𝐸 𝑎21𝑎

2
2𝜆𝐸

−𝜆𝐼𝜆𝐸 (𝑎21 − 𝜆
2
𝐸
) −𝑎21𝜆𝐸 (𝑎

2
1 − 𝜆

2
𝐸
) −𝑎21𝜆𝐼𝜆𝐸 −𝑎21𝑎

2
2𝜆𝐸

𝜆𝐼𝜆𝐸 (𝑎21 − 𝜆
2
𝐼
) 𝑎21𝜆𝐼 (𝑎

2
1 − 𝜆

2
𝐼
) 𝑎21𝜆𝐼𝜆𝐸 𝑎21𝑎

2
2𝜆𝐼

⎞⎟⎟⎟⎟⎠
.
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It is interesting to note that the proposed relaxed system has always real eigenvalues given by explicit easy formulas.

If we now multiply the inverse matrix by the vector of variables (𝐶1 , 𝑢1,𝐶2, 𝑢2)𝑇 , we obtain the Riemann invariants that we denote 
by (𝑅+𝐸,𝑅+𝐼 ,𝑅−𝐼 ,𝑅−𝐸 ), namely

⎛⎜⎜⎜⎝
𝑅−𝐸
𝑅−𝐼
𝑅+𝐼
𝑅+𝐸

⎞⎟⎟⎟⎠ =𝐾
−1

⎛⎜⎜⎜⎝
𝐶1
𝑢1
𝐶2
𝑢2

⎞⎟⎟⎟⎠ . (10)

Of course, 𝐶1, 𝑢1,𝐶2, 𝑢2 can be recovered from

⎛⎜⎜⎜⎝
𝐶1
𝑢1
𝐶2
𝑢2

⎞⎟⎟⎟⎠ =𝐾
⎛⎜⎜⎜⎝
𝑅−𝐸
𝑅−𝐼
𝑅+𝐼
𝑅+𝐸

⎞⎟⎟⎟⎠ , (11)

while the equations that the Riemann invariants satisfy are just simple transport equations,

⎧⎪⎨⎪⎩
𝜕𝑡𝑅−𝐸 − 𝜆𝐸𝜕𝑥𝑅−𝐸 = 0,
𝜕𝑡𝑅−𝐼 − 𝜆𝐼𝜕𝑥𝑅−𝐼 = 0,
𝜕𝑡𝑅+𝐼 + 𝜆𝐼𝜕𝑥𝑅+𝐼 = 0,
𝜕𝑡𝑅+𝐸 + 𝜆𝐸𝜕𝑥𝑅+𝐸 = 0,

(12)

which can be solved explicitly or implicitly.

Numerical discretization of the homogeneous acoustic system. We propose the following discretization of the acoustic system (4) without 
topography, i.e. neglecting the source term,

⎧⎪⎪⎨⎪⎪⎩

(ℎ1)𝑛+1−𝑖 = (ℎ1)𝑛𝑖 ,
(ℎ1𝑢1)𝑛+1−𝑖 = (ℎ1𝑢1)𝑛𝑖 − (ℎ1)𝑛𝑖

Δ𝑡 
Δ𝑥

(
(𝐶1)#𝑖+1∕2 + (𝐶2)#𝑖+1∕2 − (𝐶1)#𝑖−1∕2 − (𝐶2)#𝑖−1∕2

)
,

(ℎ2)𝑛+1−𝑖 = (ℎ2)𝑛𝑖 ,
(ℎ2𝑢2)𝑛+1−𝑖 = (ℎ2𝑢2)𝑛𝑖 − (ℎ2)𝑛𝑖

Δ𝑡 
Δ𝑥

(
(𝐶2)#𝑖+1∕2 + 𝑟(𝐶1)#𝑖+1∕2 − (𝐶2)#𝑖−1∕2 − 𝑟(𝐶1)#𝑖−1∕2

)
,

where # = 𝑛 for an explicit scheme and # = 𝑛+1− for an implicit one and the numerical fluxes are defined from the Riemann invariants 
by

⎛⎜⎜⎜⎜⎜⎝

(𝐶1)#𝑖+1∕2
(𝑢1)#𝑖+1∕2
(𝐶2)#𝑖+1∕2
(𝑢2)#𝑖+1∕2

⎞⎟⎟⎟⎟⎟⎠
=𝐾

⎛⎜⎜⎜⎜⎝
(𝑅−𝐸 )#𝑖+1(𝑥𝑖+1∕2)
(𝑅−𝐼 )#𝑖+1(𝑥𝑖+1∕2)
(𝑅+𝐼 )#𝑖 (𝑥𝑖+1∕2)
(𝑅+𝐸 )#𝑖 (𝑥𝑖+1∕2)

⎞⎟⎟⎟⎟⎠
, (13)

where we use the appropriate reconstructions of the different Riemann invariants, taking into account their direction of propagation 
of the information.

The values of the Riemann invariants at time 𝑛 + 1− are obtained by solving system (12), which is composed of four transport 
equations with given constant velocities ±𝜆𝐼 and ±𝜆𝐸 , whose solutions can be approximated by the classical upwind formulas

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝑅−𝐸 )𝑛+1−𝑖 = (𝑅−𝐸 )𝑛𝑖 + 𝜆𝐸
Δ𝑡 
Δ𝑥

(
(𝑅−𝐸 )𝑛+1−𝑖+1 (𝑥𝑖+1∕2) − (𝑅−𝐸 )𝑛+1−𝑖 (𝑥𝑖−1∕2)

)
,

(𝑅−𝐼 )𝑛+1−𝑖 = (𝑅−𝐼 )𝑛𝑖 + 𝜆𝐼
Δ𝑡 
Δ𝑥

(
(𝑅−𝐼 )𝑛+1−𝑖+1 (𝑥𝑖+1∕2) − (𝑅−𝐼 )𝑛+1−𝑖 (𝑥𝑖−1∕2)

)
,

(𝑅+𝐼 )𝑛+1−𝑖 = (𝑅+𝐼 )𝑛𝑖 − 𝜆𝐼
Δ𝑡 
Δ𝑥

(
(𝑅+𝐼 )𝑛+1−𝑖 (𝑥𝑖+1∕2) − (𝑅+𝐼 )𝑛+1−𝑖−1 (𝑥𝑖−1∕2)

)
,

(𝑅+𝐸 )𝑛+1−𝑖 = (𝑅+𝐸 )𝑛𝑖 − 𝜆𝐸
Δ𝑡 
Δ𝑥

(
(𝑅+𝐸 )𝑛+1−𝑖 (𝑥𝑖+1∕2) − (𝑅+𝐸 )𝑛+1−𝑖−1 (𝑥𝑖−1∕2)

)
.

(14)

2.1.2. Nonflat topography case
Concerning the whole system (4), it is crucial to pay particular attention to the discretization of the source term −𝑔𝜕𝑥𝑧 in order 

to obtain the fully exactly well-balanced property.

A natural way to do this starts from considering an equilibrium or stationary solution. The stationary solutions (ℎ𝛼 )𝑒 and (𝑢𝛼)𝑒 for 
each layer 𝛼 are computed by solving (3). More precisely, the equilibrium solution computed on cell 𝑖 and denoted (ℎ𝛼)𝑒𝑖 and (𝑢𝛼)𝑒𝑖
will be computed by choosing the constants 𝐶1,𝛼 and 𝐶2,𝛼 with the values at the center of the cells. In practice, a Newton-Raphson 
algorithm is used to do this. The system solved to obtain this stationary solution is described in Appendix A.
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It is important to note that the stationary solution used in both the implicit and the explicit schemes is always computed using the 
solution at time step 𝑛. This approach is adopted in order to avoid solving the nonlinear problems that would arise from considering 
the stationary solution at a different time.

Another relevant point to highlight is that the computations are local to each stencil. In the case of the first-order scheme, the 
stationary solution only needs to be determined within a single cell: the central value is known, and it is only necessary to compute 
the stationary values at the intercells. For second-order schemes, the stationary problems remain local to the stencil, but in this case 
one must determine the values at the intercells as well as the cell centers in the neighboring cells. See, for instance [36,34,12,11].

As is often the case, the transition through a critical state may lead to certain difficulties. Nonetheless, addressing these issues lies 
beyond the scope of the present work.

Now, in order to include the source terms we follow a similar procedure as the one proposed in [13], integrating equation (2)

over the cell [𝑥𝑖−1∕2, 𝑥𝑖+1∕2]. Then, taking into account the splitting procedure, system (5) can be recast as

⎧⎪⎨⎪⎩
𝜕𝑡ℎ1 = 0,
𝜕𝑡𝑢1 + 𝜕𝑥

(
𝑔ℎ1 − 𝑔ℎ𝑒1 + 𝑔ℎ2 − 𝑔ℎ

𝑒
2
)
= 0,

𝜕𝑡ℎ2 = 0,
𝜕𝑡𝑢2 + 𝜕𝑥

(
𝑔ℎ2 − 𝑔ℎ𝑒2 + 𝑟𝑔ℎ1 − 𝑟𝑔ℎ

𝑒
1
)
= 0.

(15)

Now, considering (8), we add the equilibrium terms (𝐶1)𝑒𝑖 = 𝑔(ℎ1)
𝑒
𝑖

and (𝐶2)𝑒𝑖 = 𝑔(ℎ2)
𝑒
𝑖

computed from the reconstructed stationary 
solutions (ℎ1)𝑒𝑖 and (ℎ2)𝑒𝑖 of each layer on cell 𝑖, resulting on the following scheme

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ℎ1)𝑛+1−𝑖 = (ℎ1)𝑛𝑖 ,

(ℎ1𝑢1)𝑛+1−𝑖 = (ℎ1𝑢1)𝑛𝑖 − (ℎ1)𝑛𝑖
Δ𝑡 
Δ𝑥

(
(𝐶1 +𝐶2)#𝑖+1∕2 − (𝐶1 +𝐶2)#𝑖−1∕2

)
+ (ℎ1)𝑛𝑖

Δ𝑡 
Δ𝑥

(
(𝐶1 +𝐶2)𝑒𝑖 (𝑥𝑖+1∕2) − (𝐶1 +𝐶2)𝑒𝑖 (𝑥𝑖−1∕2)

)
,

(ℎ2)𝑛+1−𝑖 = (ℎ2)𝑛𝑖 ,

(ℎ2𝑢2)𝑛+1−𝑖 = (ℎ2𝑢2)𝑛𝑖 − (ℎ2)𝑛𝑖
Δ𝑡 
Δ𝑥

(
(𝐶2 + 𝑟𝐶1)#𝑖+1∕2 − (𝐶2 + 𝑟𝐶1)#𝑖−1∕2

)
+ (ℎ2)𝑛𝑖

Δ𝑡 
Δ𝑥

(
(𝐶2 + 𝑟𝐶1)𝑒𝑖 (𝑥𝑖+1∕2) − (𝐶2 + 𝑟𝐶1)𝑒𝑖 (𝑥𝑖−1∕2)

)
.

(16)

Analogously, equation (14) should also be modified to ensure the fully exactly well-balanced property, giving

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑅−𝐸 )𝑛+1−𝑖 = (𝑅−𝐸 )𝑛𝑖 + 𝜆𝐸
Δ𝑡 
Δ𝑥

(
(𝑅−𝐸 )𝑛+1−𝑖+1 (𝑥𝑖+1∕2) − (𝑅−𝐸 )𝑛+1−𝑖 (𝑥𝑖−1∕2)

)
− 𝜆𝐸

Δ𝑡 
Δ𝑥

(
(𝑅−𝐸 )𝑒𝑖+1(𝑥𝑖+1∕2) − (𝑅−𝐸 )𝑒𝑖 (𝑥𝑖−1∕2)

)
,

(𝑅−𝐼 )𝑛+1−𝑖 = (𝑅−𝐼 )𝑛𝑖 + 𝜆𝐼
Δ𝑡 
Δ𝑥

(
(𝑅−𝐼 )𝑛+1−𝑖+1 (𝑥𝑖+1∕2) − (𝑅−𝐼 )𝑛+1−𝑖 (𝑥𝑖−1∕2)

)
− 𝜆𝐼

Δ𝑡 
Δ𝑥

(
(𝑅−𝐼 )𝑒𝑖+1(𝑥𝑖+1∕2) − (𝑅−𝐼 )𝑒𝑖 (𝑥𝑖−1∕2)

)
,

(𝑅+𝐼 )𝑛+1−𝑖 = (𝑅+𝐼 )𝑛𝑖 − 𝜆𝐼
Δ𝑡 
Δ𝑥

(
(𝑅+𝐼 )𝑛+1−𝑖 (𝑥𝑖+1∕2) − (𝑅+𝐼 )𝑛+1−𝑖−1 (𝑥𝑖−1∕2)

)
+ 𝜆𝐼

Δ𝑡 
Δ𝑥

(
(𝑅+𝐼 )𝑒𝑖 (𝑥𝑖+1∕2) − (𝑅+𝐼 )𝑒𝑖−1(𝑥𝑖−1∕2)

)
,

(𝑅+𝐸 )𝑛+1−𝑖 = (𝑅+𝐸 )𝑛𝑖 − 𝜆𝐸
Δ𝑡 
Δ𝑥

(
(𝑅+𝐸 )𝑛+1−𝑖 (𝑥𝑖+1∕2) − (𝑅+𝐸 )𝑛+1−𝑖−1 (𝑥𝑖−1∕2)

)
+ 𝜆𝐸

Δ𝑡 
Δ𝑥

(
(𝑅+𝐸 )𝑒𝑖 (𝑥𝑖+1∕2) − (𝑅+𝐸 )𝑒𝑖−1(𝑥𝑖−1∕2)

)
.

(17)

If a steady state initial condition is considered, that is (𝑅±𝐸 )0𝑖 = (𝑅±𝐸 )𝑒𝑖 and (𝑅±𝐼 )0𝑖 = (𝑅±𝐼 )𝑒𝑖 , then (𝑅±𝐸 )1−𝑖 = (𝑅±𝐸 )𝑒𝑖 and (𝑅±𝐼 )1−𝑖 =
(𝑅±𝐼 )𝑒𝑖 is a solution of system (17). In addition, in (16) we would have that (𝐶1+𝐶2)#𝑖±1∕2 = (𝐶1+𝐶2)𝑒𝑖±1∕2(𝑥𝑖±1∕2) and (𝐶2+𝑟𝐶1)#𝑖±1∕2 =
(𝐶2 + 𝑟𝐶1)𝑒𝑖±1∕2(𝑥𝑖±1∕2) resulting on (ℎ1)1−𝑖 = (ℎ1)0𝑖 , (ℎ2)

1−
𝑖

= (ℎ2)0𝑖 , (ℎ1𝑢1)
1−
𝑖

= (ℎ1𝑢1)0𝑖 and (ℎ2𝑢2)1−𝑖 = (ℎ2𝑢2)0𝑖 , as desired.

Finally, let us remark that the CFL condition related to the pressure step, if it is done explicitly, is given by

Δ𝑡 ≤ Δ𝑥 ⋅ CFL𝑝

𝜆+
𝐸

. (18)

2.2. Transport step

It remains to describe the discretization of the transport step, which is naturally given by

(𝑋𝛼)𝑛+1𝑖 = (𝑋𝛼)𝑛+1−𝑖 − Δ𝑡 
Δ𝑥

(
(𝑢𝛼)𝑛+1−𝑖+1∕2(𝑋𝛼)

𝑛+1−
𝑖+1∕2 − (𝑢𝛼)𝑛+1−𝑖−1∕2(𝑋𝛼)

𝑛+1−
𝑖−1∕2

)
, (19)
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for 𝛼 = 1,2, 𝑋 = ℎ,ℎ𝑢, and for all 𝑖

(𝑋𝛼)𝑛+1−𝑖+1∕2 =

{
(𝑋𝛼)𝑛+1−𝑖

(𝑥𝑖+1∕2) if (𝑢𝛼)𝑛+1−𝑖+1∕2 ≥ 0,
(𝑋𝛼)𝑛+1−𝑖+1 (𝑥𝑖+1∕2) if (𝑢𝛼)𝑛+1−𝑖+1∕2 < 0,

where the values (𝑋𝛼)𝑛+1−𝑖
(𝑥𝑖+1∕2) and (𝑋𝛼)𝑛+1−𝑖+1 (𝑥𝑖+1∕2) are computed using the appropriate fully exactly well-balanced reconstruction 

operator as it will be described in Section 3. It is essential to consider these fully exactly well-balanced reconstruction operators in 
the transport step in order to obtain the fully exactly well-balanced property. See, for instance, [11,13] for more detail.

The CFL condition associated to this step is given by

Δ𝑡 ≤ Δ𝑥 ⋅ CFL𝑡

max𝑖(|(𝑢1)𝑖|, |(𝑢2)𝑖)|) . (20)

It is important to clarify that for explicit schemes, the time step Δ𝑡 will be chosen as the minimum value satisfying the conditions 
expressed in equations (18) and (20). When the acoustic system is solved implicitly, only (20) will be required. In many applications, 
for small Froude number, it is expected that (18) is much more restrictive than (20). Therefore, when applying the semi-implicit 
approach, we will usually consider a CFL number greater than 1, meaning that we compute Δ𝑡 by (18) for this CFL number. However, 
one must bear in mind that our semi-implicit schemes are still subject to a stability limitation from the transport step, which depends 
on the fluid velocity. As a result, although the constraint linked to the sound speed is relaxed in the implicit treatment, the time step 
cannot be arbitrarily large, since it remains bounded by (20).

3. Fully exactly well-balanced space reconstruction operators

This section is devoted to the construction of first and second order fully well-balanced reconstruction operators. We begin by 
detailing the procedure used to derive fully exactly well-balanced operators for the explicit schemes. We then proceed to develop the 
corresponding operators for the implicit formulations.

Fully exactly well-balanced space reconstruction operator for explicit schemes. We begin by defining a suitable space reconstruction 
operator. Note that the objective is to increase the order of accuracy in space, while keeping the well-balanced property of our 
schemes. We follow the general strategy presented in [24], combined with the ideas introduced in [12]. The first step is to define, 
from a given set of constant cell values {U𝑛

𝑖
} on each cell 𝐼𝑖 = (𝑥𝑖−1∕2, 𝑥𝑖+1∕2), an exact fully exactly well-balanced reconstruction 

operator. For each 𝑖, it consists on

1. Finding, if possible, a stationary solution 𝑥↦ U𝑒
𝑖
(𝑥) such that

1 
Δ𝑥

𝑥𝑖+1∕2

∫
𝑥𝑖−1∕2

U𝑒𝑖 (𝑥) 𝑑𝑥 = U𝑛𝑖 .

Otherwise, take U𝑒
𝑖
≡ 0.

2. Computing the fluctuations {V𝑛
𝑗
}𝑗∈𝑆𝑖 , given by

V𝑛𝑗 = U𝑛𝑗 −
1 
Δ𝑥

𝑥𝑗+1∕2

∫
𝑥𝑗−1∕2

U𝑒𝑖 (𝑥) 𝑑𝑥, 𝑗 ∈ 𝑖,

where 𝑖 is a given stencil of cell 𝐼𝑖.
3. Applying a standard reconstruction operator of order 𝑝, denoted by 𝐐𝑖, to the fluctuations,

𝐐𝑛𝑖 (𝑥) =𝐐𝑖(𝑥; {V𝑛𝑗}𝑗∈𝑖 ).
4. Finally, defining the fully exactly well-balanced reconstruction operator as

P𝑛𝑖 (𝑥) = U𝑒𝑖 (𝑥) +𝐐𝑛𝑖 (𝑥).

Note that, in practice, a quadrature formula will be used to evaluate the integrals. As only first and second order reconstruction 
operators are considered here, the integrals are approximated by the mid-point rule, so that the stationary solutions are such that

U𝑒𝑖 (𝑥𝑖) = U𝑛𝑖

in step 1 above, and

V𝑛𝑗 = U𝑛𝑗 − U𝑒𝑖 (𝑥𝑗 ), 𝑗 ∈ 𝑖,
in step 2.
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The proposed reconstruction operator described in this section will be applied in a classical way to the computations of the 
numerical fluxes at interfaces 𝑖 + 1∕2 in update formulas (13) and (16), when the schemes are explicit in time, that is to say when 
# = 𝑛, and in the transport step (19).

Fully exactly well-balanced space reconstruction operator for implicit schemes. When considering implicit schemes such that # = 𝑛+1−, 
a similar approach would be very costly and therefore out of reach in practice since it implies the computation of stationary solutions 
at every cell from the solution at time 𝑛+ 1− that we do not know.

In order to avoid this, we suggest to proceed as in [12]. The fully exactly well-balanced reconstruction operator defined by step 
4 above, namely

P𝑛𝑖 (𝑥) = U𝑒𝑖 (𝑥) +𝐐𝑖(𝑥; {V𝑛𝑗}𝑗∈𝑖 ),
is replaced by a standard reconstruction operator based on time fluctuations, namely

P𝑛𝑖 (𝑥, 𝑡) = P𝑛𝑖 (𝑥) + 𝐐̃𝑖(𝑥; {U
𝑡,𝑓
𝑗
}𝑗∈𝑖 ), where U

𝑡,𝑓
𝑗

= U𝑗 (𝑡) − U𝑛𝑗 .

If we consider a first-order reconstruction, the reconstruction operator can be written as

P𝑛𝑖 (𝑥, 𝑡) = U𝑒𝑖 (𝑥) + U𝑛𝑖 − U𝑒𝑖 (𝑥𝑖) + U𝑖(𝑡) − U𝑛𝑖 .

If we consider a second-order reconstruction, the reconstruction operator can be written as

P𝑛𝑖 (𝑥, 𝑡) = U𝑒𝑖 (𝑥) + U𝑛𝑖 − U𝑒𝑖 (𝑥𝑖) + ΔV𝑛𝑖 (𝑥− 𝑥𝑖) + U𝑖(𝑡) − U𝑛𝑖 +ΔU
𝑛,𝑓
𝑖

(𝑥− 𝑥𝑖),

where ΔV𝑛
𝑖

are the space fluctuations with respect to the stationary solution frozen at time 𝑡𝑛 , and ΔU
𝑛,𝑓
𝑖

are the time fluctuations.

Here, ΔV𝑛
𝑖

is computed using the avg limiter [44], that is,

ΔV𝑛𝑖 =
1 
Δ𝑥

(
𝜙𝑛𝑖+(V

𝑛
𝑖 − V𝑛

𝑖−1) + 𝜙
𝑛
𝑖−(V

𝑛
𝑖+1 −V𝑛𝑖 )

)
,

with

𝜙
𝑡0
𝑖− =

⎧⎪⎨⎪⎩
|𝑑𝑖−| |𝑑𝑖−|+ |𝑑𝑖+| if |𝑑𝑖−|+ |𝑑𝑖+| > 0,

0 otherwise,

and

𝜙
𝑡0
𝑖+ =

⎧⎪⎨⎪⎩
|𝑑𝑖+| |𝑑𝑖−|+ |𝑑𝑖+| if |𝑑𝑖−|+ |𝑑𝑖+| > 0,

0 otherwise,

where 𝑑𝑖− = V𝑛
𝑖
− V𝑛

𝑖−1 and 𝑑𝑖+ = V𝑛
𝑖+1 − V𝑛

𝑖
.

Moreover, ΔU
𝑡,𝑓
𝑖

is computed as

ΔU
𝑡,𝑓
𝑖

= 1 
Δ𝑥

(
𝜙̃
𝑡0
𝑖+(U

𝑡,𝑓
𝑖

− U
𝑡,𝑓

𝑖−1) + 𝜙̃
𝑡0
𝑖−(U

𝑡,𝑓

𝑖+1 − U
𝑡,𝑓
𝑖
)
)

with 𝜙̃𝑡0
𝑖± = 𝜙𝑡0

𝑖±. Note that in both cases we have used the same limiter computed at time 𝑡𝑛 to avoid nonlinearities.

The proposed reconstruction operator described in this section is then applied in a classical way to the computations of the 
numerical fluxes at interfaces 𝑖+ 1∕2 when the schemes are now implicit in time, that is to say when # = 𝑛+ 1−.

4. Second-order in time extension

In order to obtain second-order accuracy in time and space, we use a second-order time integration method based on Strang 
splitting (see [56,42,43]) combined with the previous second-order space reconstructions.

To be more precise, the following sequence of sub-steps is applied at each time iteration:

1. Perform a half time step Δ𝑡∕2 of the acoustic (resp. transport) system, yielding intermediate approximations ̃ℎ𝑛+1
𝑖

and (̃ℎ𝑢)
𝑛+1
𝑖 .

2. Advance the transport (resp. acoustic) system using a full time step Δ𝑡, obtaining the approximations ̂ℎ𝑛+1
𝑖

and (̂ℎ𝑢)
𝑛+1
𝑖 .

3. Conclude with another half time step Δ𝑡∕2 of the acoustic (resp. transport) system, resulting in the final values ℎ𝑛+1
𝑖

and (ℎ𝑢)𝑛+1𝑖

at time 𝑡𝑛+1.
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Fig. 2. Free surface, 𝜂1 , and interface, 𝜂2 , obtained at time 𝑡 = 2 for a shock test case: comparison between Roe, EXP O1 and IMP O1 schemes. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

It is worth noting that, in principle, either of the two possible orderings in the splitting procedure may be adopted. That is, 
one could perform the pressure–transport--pressure or transport–pressure--transport steps. In this work, we choose the latter, as this 
ordering was observed to provide improved stability properties in the previous work [12].

5. Numerical experiments

In this section we will check and compare the properties and performance of four different schemes: first and second order explicit 
schemes, in which both the pressure step and the transport step are performed explicitly, and first and second order semi-implicit 
schemes, in which the pressure step is solved implicitly while the transport one is done explicitly. We will refer to them as EXP O1, 
EXP O2, IMP O1, IMP O2, respectively.

5.1. Comparison with a standard path-conservative Roe’s scheme

Let us perform first a comparison between the schemes introduced in this paper and a standard path-conservative Roe’s solver 
based on segment paths (see [50] and [15]). In order to do so, we consider an initial condition that introduces a discontinuity in the 
height of the second layer ℎ2, while setting 𝑞1 = 𝑞2 = 0 and assuming a flat bottom topography. The initial condition is then given by:

ℎ1(𝑥, 𝑡 = 0) = 1 − ℎ2(𝑥, 𝑡 = 0), ℎ2(𝑥, 𝑡 = 0) =
⎧⎪⎨⎪⎩
0.8, 𝑥 < −1,
0.2, −1 <= 𝑥 <= 1,
0.8, 𝑥 > 1,

𝑞1(𝑥, 𝑡 = 0) = 𝑞2(𝑥, 𝑡 = 0) = 0,

together with 𝑟 = 0.98.

Figs. 2, 3 and 4 present the solutions obtained using a Roe-type scheme with CFL 0.5 and 3000 cells (used as a reference solution) 
and our proposed first-order schemes: the explicit scheme (EXP O1) with CFL 0.9 and the implicit scheme (IMP O1) for various CFL 
numbers (CFL = 2, 5, 10) using for both 200 cells.

We observe that both the EXP O1 and IMP O1 schemes are able to reproduce the general structure of the reference Roe-type 
solution. All schemes capture the amplitude and shape of the shock well, with the implicit schemes showing slightly more diffusive 
behavior as the CFL number increases, as expected. However, even for high CFL numbers (e.g., CFL = 10), the IMP O1 scheme results 
are quite good.

A closer view of the solution for 𝜂2 in Fig. 3 helps to evaluate the resolution of the shock front. The Roe scheme exhibits the 
sharpest profile, while the explicit and low-CFL implicit schemes (CFL = 2) follow it closely. As the CFL number increases, the IMP 
O1 scheme becomes slightly more diffusive, yet the shock position and overall profile remain consistent with the reference.

The results for the discharges 𝑞1 and 𝑞2 in Fig. 4, further confirm the good performance of our methods. All schemes present the 
same behavior, including the symmetry and localization of the velocity-induced waves. Again, the Roe scheme is slightly sharper, but 
the explicit and implicit schemes provide comparable results with only minor differences. The implicit scheme maintains accuracy 
even for large CFL numbers, demonstrating its potential for more efficient simulations with larger time steps.

In addition to the qualitative agreement with the Roe-type reference solution, we have also verified that the schemes used for 
this test preserve the total mass and momentum, obtaining that they remain constant throughout the simulation with deviations on 
the order of 10−16. This excellent behavior further supports the reliability of the proposed methods, even when large time steps are 
employed in the implicit schemes.
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Fig. 3. Details on the interface, 𝜂2 , obtained at time 𝑡 = 2 for a shock test case: comparison between Roe, EXP O1 and IMP O1 schemes. 

Fig. 4. Discharges obtained at time 𝑡 = 2 for a shock test case: comparison between Roe, EXP O1 and IMP O1 schemes. 

5.2. Exactly well-balanced property check: lake-at-rest

Let us consider a lake-at-rest initial condition in the domain [−5,5] given by the following topography:

𝑧(𝑥) = −1 + 0.1𝑒−𝑥2 , (21)

as well as the water heights and discharges given by

ℎ1(𝑥, 𝑡 = 0) = 0.2, ℎ2(𝑥, 𝑡 = 0) = 0.2 − 𝑧(𝑥),

𝑞1(𝑥, 𝑡 = 0) = 𝑞2(𝑥, 𝑡 = 0) = 0.
(22)

Moreover, 𝑟 has been set to be 0.98. This initial condition has been plotted in Fig. 5.

Table 1 shows the errors obtained in 𝐿1-norm for the different schemes when comparing the initial condition with the ones 
obtained at 𝑡 = 1 using 200 cells. For the explicit schemes, the CFL has been set to 0.9, and for the implicit ones, CFL 5 has been 
considered. As expected, the lake-at-rest initial condition is preserved up to machine precision.
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Fig. 5. Lake-at-rest steady state. 

Table 1
Errors in 𝐿1-norm for the solutions obtained for different 
schemes at time 𝑡 = 1 when compared with the lake-at-rest initial 
condition.

Error ℎ1 Error ℎ2 Error 𝑞1 Error 𝑞2
EXP O1 3.38e-13 3.54e-13 8.48e-14 3.70e-13 
EXP O2 2.86e-13 2.89e-13 7.63e-14 2.57e-13 
IMP O1 6.89e-13 7.19e-13 1.55e-13 6.59e-13 
IMP O2 4.07e-13 4.85e-13 1.70e-13 7.03e-13 

5.3. Fully exactly well-balanced property check: nonzero velocity steady state

To verify the fully exactly well-balanced property of our scheme, a steady state with nonzero velocity has been considered as the 
initial condition. For this purpose, the same spatial domain of the previous test has been used, along with the same topography (21). 
The steady state has been computed using the following initial values:

𝑞1(𝑥, 𝑡 = 0) = 0.01, 𝑞2(𝑥, 𝑡 = 0) = 0.001, 𝑥 ∈ [−5,5],

ℎ1(−5, 𝑡 = 0) = 0.005, ℎ2(−5, 𝑡 = 0) = 0.7,
(23)

and the remaining values in the domain have been determined accordingly. The resulting steady state has Froude number 4.07, so 
we are in the case of a supercritical stationary solution. The initial surface 𝜂1 and interface 𝜂2 are shown in Fig. 6. Table 2 shows the 
errors obtained in 𝐿1-norm for the different schemes when comparing the initial condition with the ones obtained at 𝑡 = 1 using 200
cells. It is confirmed that the fully exactly well-balanced property is satisfied, as expected.

5.4. Accuracy test

Let us now evaluate the order of accuracy of the schemes. To this end, we take as the initial condition a small perturbation of a 
steady-state configuration where the water is at rest:

ℎ1(𝑥,0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.05
(
1 + cos

(
2𝜋(𝑥−4750)

3500 
))

for 3000< 𝑥 < 6500

0.05
(
−
(
1 + cos

(
2𝜋(𝑥−9250)

3500 
)))

for 7500< 𝑥 < 11000

0 otherwise,

with ℎ2(𝑥,0) = 1 − 𝑧(𝑥), 𝑞1(𝑥,0) = 𝑞2(𝑥,0) = 0, 𝑟 = 0.98 and bottom topography

𝑧(𝑥) = −
(
50 − exp

(
−(𝑥− 7000)2

1000000 

))
.

The computational domain extends over [0,14000], and the simulation runs until the final time 𝑡 = 1. We impose periodic boundary 
conditions. The considered reference solution has 3200 cells. The initial free surface and interfaces are shown in Fig. 7.

The errors and the convergence rates obtained with the different schemes are the expected ones and they are shown in Tables 3-6.
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Fig. 6. Initial surface 𝜂1 and interface 𝜂2 for the supercritical steady state given by (23). 

Table 2
Errors in 𝐿1-norm for the solutions obtained for different 
schemes at time 𝑡 = 1 when compared with the stationary ini

tial condition given by (23).

Error ℎ1 Error ℎ2 Error 𝑞1 Error 𝑞2
EXP O1 1.96e-13 2.00e-13 2.07e-14 2.19e-13 
EXP O2 1.83e-13 1.84e-13 1.79e-14 1.71e-13 
IMP O1 1.15e-12 1.13e-12 4.10e-13 6.12e-13 
IMP O2 2.38e-13 3.33e-13 7.61e-14 7.91e-13 

Fig. 7. Initial free surface and interface for the accuracy test. 

Table 3
Errors in 𝐿1 norm and convergence rates for the EXP O1 scheme with CFL 0.9.

No. of 
cells 

ℎ1 𝑞1 ℎ2 𝑞2

Error Order Error Order Error Order Error Order 
50 1.30e-02 - 2.07e-03 - 1.43e-02 - 1.01e-01 -

100 6.50e-03 1.00 1.09e-03 0.93 4.07e-03 1.81 5.42e-02 0.90 
200 2.90e-03 1.16 4.15e-04 1.39 1.12e-03 1.86 2.08e-02 1.38 
400 1.30e-03 1.16 2.01e-04 1.05 3.70e-04 1.60 1.01e-02 1.04 
800 6.20e-04 1.07 8.29e-05 1.28 1.26e-04 1.55 4.18e-03 1.28 
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Table 4
Errors in 𝐿1 norm and convergence rates for the IMP O1 scheme with CFL 1.5.

No. of 
cells 

ℎ1 𝑞1 ℎ2 𝑞2

Error Order Error Order Error Order Error Order 
50 3.00e-02 - 2.98e-02 - 3.37e-02 - 1.51e+00 -

100 1.50e-02 1.00 1.76e-02 0.76 1.94e-02 0.80 8.94e-01 0.76 
200 7.00e-03 1.10 9.16e-03 0.94 1.20e-02 0.69 4.65e-01 0.94 
400 3.20e-03 1.13 4.41e-03 1.05 6.61e-03 0.86 2.24e-01 1.05 
800 1.50e-03 1.09 1.93e-03 1.20 3.11e-03 1.09 9.79e-02 1.20 

Table 5
Errors in 𝐿1 norm and convergence rates for the EXP O2 scheme with CFL 0.9.

No. of 
cells 

ℎ1 𝑞1 ℎ2 𝑞2

Error Order Error Order Error Order Error Order 
50 2.24e-03 - 3.72e-04 - 1.10e-02 - 1.85e-02 -

100 5.86e-04 1.94 9.52e-05 1.96 2.85e-03 1.95 4.75e-03 1.96 
200 1.47e-04 2.00 2.31e-05 2.05 7.56e-04 1.92 1.15e-03 2.04 
400 3.60e-05 2.03 6.26e-06 1.88 2.10e-04 1.85 3.14e-04 1.88 
800 7.44e-06 2.27 1.43e-06 2.12 5.18e-05 2.02 7.21e-05 2.12 

Table 6
Errors in 𝐿1 norm and convergence rates for the IMP O2 scheme with CFL 1.5.

No. of 
cells 

ℎ1 𝑞1 ℎ2 𝑞2

Error Order Error Order Error Order Error Order 
50 2.16e-03 - 1.61e-02 - 2.24e-02 - 8.18e-01 -

100 5.75e-04 1.91 5.10e-03 1.66 5.58e-03 2.01 2.59e-01 1.66 
200 1.44e-04 2.00 1.26e-03 2.02 1.39e-03 2.01 6.41e-02 2.02 
400 3.58e-05 2.01 2.86e-04 2.14 3.11e-04 2.16 1.45e-02 2.14 
800 8.54e-06 2.07 5.90e-05 2.28 6.80e-05 2.19 2.99e-03 2.28 

5.5. Internal shock test case

In order to assess the performance of our numerical schemes in the presence of shock waves, we consider a test case featuring a 
shock in the interface. The bottom topography is assumed to be flat, and the initial condition within the domain [0,10] is specified 
as follows:

ℎ1(𝑥, 𝑡 = 0) =
⎧⎪⎨⎪⎩
0.4, 𝑥 < 4,
0.35, 4 < 𝑥 < 6,
0.4, 𝑥 > 6,

ℎ2(𝑥, 𝑡 = 0) =
⎧⎪⎨⎪⎩
0.2, 𝑥 < 4,
0.25, 4 < 𝑥 < 6,
0.2, 𝑥 > 6,

𝑞1(𝑥, 𝑡 = 0) = 𝑞2(𝑥, 𝑡 = 0) = 0.

Additionally, we set 𝑟 = 0.98. Note that the free surface 𝜂1 is constant while a shock is present for the variable 𝜂2 . The corresponding 
initial condition is presented in Fig. 8.

Figs. 9, 10, 11, 12 show the numerical solutions obtained at time 𝑡 = 1 for the schemes introduced here, using 200 cells. The results 
are compared with a reference solution computed using the first-order explicit scheme with 1600 cells. For the explicit schemes, a 
CFL number of 0.9 has been adopted, whereas for the implicit schemes, we show results for several CFL values equal or larger than 1. 
The first order implicit scheme allows us to consider bigger CFL values than the second order one without showing big oscillations. 
This is the reason why we have considered CFL 3 for the first order one and CFL 1.5 for the second order one.

Since this test case involves a shock, larger CFL values for the implicit schemes are not feasible. Recall that the slope limiters are 
evaluated at time 𝑡𝑛 and therefore spurious oscillations appear for very large time steps. For this reason, the second order semi-implicit 
scheme does not allow the use of big CFL values, since in that case spurious oscillations appear.

With this in mind, we restrict our attention to the first order schemes in order to study the CPU efficiency with respect to the 
explicit one for large CFL values. In this case, the CPU time needed for the IMP O1 with CFL 3 is 0.27, while the value for the EXP O1 
is 0.77, which is almost 3 times faster. As expected, the speed-up increases with the CFL, obtaining 4.5 for CFL 5 and 8.5 for CFL 10.

Moreover, we will also perform additional experiments without shocks where higher CFL values can be used for the second order 
scheme, thereby allowing for a clearer demonstration of the computational efficiency gains of implicit schemes relative to explicit 
ones.

Overall, all schemes exhibit satisfactory performance. The second-order explicit scheme introduces some oscillations in the variable 
𝜂1, though these oscillations are mitigated when employing implicit schemes, likely due to their inherently more diffusive nature. 
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Fig. 8. Initial condition for the internal shock test case. 

Fig. 9. Free surface 𝜂1 and zoom obtained for the internal shock test case at time 𝑡= 1. 

However, the diffusion effect is less pronounced in the second-order implicit scheme compared to the first-order one. Moreover, as 
the CFL number increases, the diffusive behavior becomes more evident, as expected.

5.6. Tidal wave test

The aim of this test is to assess the gain in computational efficiency of the implicit schemes with respect to the explicit ones. For 
doing so, we propose a tidal wave test, where we consider a channel with length 𝐿 = 14000, the following bottom topography:

𝑧(𝑥) = − 𝑥 
1400

+ 40, (24)

and a lake-at-rest initial condition given by:

ℎ1(𝑥, 𝑡 = 0) = 0.4, ℎ2(𝑥, 𝑡 = 0) = 0.2 − 𝑧(𝑥),

𝑞1(𝑥, 𝑡 = 0) = 𝑞2(𝑥, 𝑡 = 0) = 0.

The value of 𝑟 is again set to be 0.98 and a tidal wave of amplitude 0.05 is simulated by imposing the following boundary condition 
for the water heights on the right of the domain:

ℎ1(𝐿, 𝑡) = ℎ1(𝐿,0) +𝜑𝑡𝛼1,

ℎ2(𝐿, 𝑡) = ℎ2(𝐿,0) +𝜑𝑡𝛼2.

where
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Fig. 10. Interface 𝜂2 and zoom obtained for the internal shock test case at time 𝑡= 1. 

Fig. 11. Upper layer discharge 𝑞1 and zoom obtained for the internal shock test case at time 𝑡= 1. 

𝛼𝑖 =
ℎ𝑖(𝐿,0) 

ℎ1(𝐿,0) + ℎ2(𝐿,0)
𝑖 = 1,2,

and

𝜑𝑡 = 0.05 sin
( 2𝜋𝑡 
86400

)
,

In this test case, the graphs of the different schemes are almost indistinguishable. In Table 7 we show the CPU time in seconds 
needed for the different schemes to compute the solution up to time 𝑡 = 3600 using 200 cells. In order to perform this test, we have 
chosen the maximum CFL for which the solutions do not present oscillations, which in this case is 0.5 for the explicit schemes and 
1.5 for the implicit ones. As we can see, the speed-up for the first order schemes is close to 3, while for the second-order ones it is 
almost 2.

Again, as discussed in the previous test, the first order implicit scheme allows us to consider bigger CFL values than the second 
order one. Therefore, we have also computed CPU times for this scheme using different CFLs, obtaining the times and speed-ups 
shown in Table 8. It appears that doubling the CFL number results in a proportional doubling of the speed-up. The graphs for 𝜂1 and 
𝑞1 of these simulations are shown in Fig. 13. We can observe that, as expected, when the CFL is increased, the schemes become more 
diffusive.

Applied Numerical Mathematics 218 (2025) 128–147 

143 



C. Caballero-Cárdenas, M.J. Castro, C. Chalons et al. 

Fig. 12. Lower layer discharge 𝑞1 and zoom obtained for the internal shock test case at time 𝑡= 1. 

Table 7
CPU time in seconds needed for the different schemes to com

pute the tidal wave case solution up to time 𝑡 = 3600 using 
200 cells.

EXP O1 IMP O1 EXP O2 IMP O2 
CPU time 128.67 44.55 196.99 107.65 

Table 8
CPU time and speed-ups for the first 
order semi-implicit scheme for dif

ferent CFL values.

CFL CPU time Speed-up 
5 13.13 10 
10 6.50 20 
20 3.37 38 
40 1.69 76 

Fig. 13. Free surface, 𝜂1, and discharge for the upper layer, 𝑞1, obtained for the tidal wave test case at time 𝑡 = 3600 using different CFL values. 
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6. Conclusions

In this work, we have developed explicit and semi-implicit numerical schemes for the two-layer shallow water system that exactly 
preserve every steady state of the problem. To the best of our knowledge, we believe it is the first time that a fully exactly well-balanced 
scheme is proposed for this system. The methodology proposed here is based on operator splitting and relaxation techniques, and has 
allowed us to design first- and second-order schemes that maintain both accuracy and stability.

A variety of numerical experiments have been conducted to validate the proposed methods. They include tests to verify the fully 
exactly well-balanced property, accuracy tests, discontinuous initial conditions involving internal shocks as well as a tidal wave test. 
In all cases, our schemes exhibit robust behavior and satisfying results.

Eventhough the nonconservative formulation of the acoustic system is used, we have checked that the final numerical scheme 
preserves the total mass and momentum for the flat topography case.

Particularly noteworthy is the performance of the implicit schemes at high CFL numbers. These schemes remain stable and accurate 
under large time steps, leading to significant gain in computational efficiency with respect to explicit schemes. For instance, in long

time simulations such as the tidal wave test, the implicit methods yield big speed-ups while preserving the quality of the solution. 
This makes them especially suitable for situations involving large time scales and low Froude numbers.
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Appendix A. Computation of the stationary solutions

In order to compute the stationary solutions ℎ𝑒1 and ℎ𝑒2 given by (3) at any point 𝑥𝑝 in a given cell, we use a Newton-based fixed 
point algorithm. We initialise this fixed point algorithm with the corresponding cell averages, that is, as ℎ𝑒,01 = ℎ1 and ℎ𝑒,02 = ℎ2. Then, 
for each iteration 𝑙, we update ℎ𝑒,𝑙+11 and ℎ𝑒,𝑙+12 solving the system given by

𝐴𝑙 ⋅Δℎ = 𝐹 𝑙,

where

𝐴𝑙 =
⎛⎜⎜⎜⎝
3𝑔

(
ℎ𝑒,𝑙1

)2
+ 2

(
𝑔
(
ℎ𝑒,𝑙2 + 𝑧(𝑥𝑝)

)
−𝐶2,1

)
ℎ𝑒,𝑙1 𝑔

(
ℎ𝑒,𝑙1

)2

𝑟𝑔
(
ℎ𝑒,𝑙2

)2
3𝑔(ℎ𝑒,𝑙2 )2 + 2

(
𝑔
(
𝑟ℎ𝑒,𝑙1 + 𝑧(𝑥𝑝)

)
−𝐶2,2

)
ℎ𝑒,𝑙2

⎞⎟⎟⎟⎠
and

𝐹 𝑙 =
⎛⎜⎜⎜⎝
𝑔
(
ℎ𝑒,𝑙1

)3
+
(
𝑔
(
ℎ𝑒,𝑙2 + 𝑧(𝑥𝑝)

)
−𝐶2,1

)(
ℎ𝑒,𝑙1

)2
+ 1

2 𝑞
2
1

𝑔
(
ℎ𝑙2

)3 + (
𝑔
(
𝑟ℎ𝑒,𝑙1 + 𝑧(𝑥𝑝)

)
−𝐶2,2

)(
ℎ𝑒,𝑙2

)2
+ 1

2 𝑞
2
2 ,

⎞⎟⎟⎟⎠ ,
and finally updating

ℎ𝑙+11 = ℎ𝑙1 + Δℎ1,

ℎ𝑙+12 = ℎ𝑙2 + Δℎ2,
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where Δℎ1 and Δℎ2 are the first and second components of the solution of the system Δℎ.

In the presence of sonic points, the system is not regular. In this case, the technique introduced in [35] could be applied.
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