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Atherosclerosis is a complex inflammatory disease involving extensive vascular

vessel remodelling and migration of vascular cells. As RCAN1 is implicated in cell

migration, we investigated its contribution to atherosclerosis. We show RCAN1

induction in atherosclerotic human and mouse tissues. Rcan1 was expressed in

lesional macrophages, endothelial cells and vascular smooth muscle cells and

was induced by treatment of these cells with oxidized LDLs (oxLDLs). Rcan1

regulates CD36 expression and its genetic inactivation reduced atherosclerosis

extension and severity in Apoe�/� mice. This effect was mechanistically linked to

diminished oxLDL uptake, resistance to oxLDL-mediated inhibition of macro-

phage migration and increased lesional IL-10 and mannose receptor expression.

Moreover, Apoe�/�Rcan1�/� macrophages expressed higher-than-Apoe�/� levels

of anti-inflammatory markers. We previously showed that Rcan1 mediates

aneurysm development and that its expression is not required in haematopoietic

cells for this process. However, transplantation of Apoe�/�Rcan1�/� bone-

marrow (BM) cells into Apoe�/� recipients confers atherosclerosis resistance. Our

data define amajor role for haematopoietic Rcan1 in atherosclerosis and suggest

that therapies aimed at inhibiting RCAN1 expression or function might

significantly reduce atherosclerosis burden.
.220.10.17.
INTRODUCTION

Atherosclerosis, the underlying cause of myocardial infarction,
stroke and peripheral vascular disease, is the major cause of
morbidity and mortality in the developed world. The initial steps
of atherosclerosis are characterized by the subendothelial
accumulation of apolipoprotein B‐containing low‐density lipo-
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proteins (LDLs) in the artery wall. The oxidative modification
of these lipoproteins [oxidized LDL (oxLDL)] triggers the
activation of the vascular endothelium and drives an influx of
monocytes to the vascular intima, where they differentiate
into macrophages and phagocytose oxLDL (Hansson &
Hermansson, 2011). Although in other contexts macrophages
egress from the inflammation site after engulfing unwanted
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material, in an atherosclerotic plaque the loading of oxLDL into
macrophages shifts them to a more sessile, foam‐cell phenotype,
and these foam cells do not leave the lesion after clearing the
lipids (Angeli et al, 2004; Randolph, 2008). The trapping of
cholesterol‐engorged foam cells causes the plaque to expand
through the recruitment of additional leukocytes and vascular
smooth muscle cells (VSMCs). As these lesions mature they
continue to accumulate extracellular lipids, and the central core
of the mature plaque becomes necrotic. Rupture of plaques
produce acute coronary syndromes, unstable angina, myocardi-
al infarction and sudden death (Libby, 2002).

Monocytes/macrophages are a relatively heterogeneous
population, and the existence of at least two broad classes of
macrophage phenotype has been proposed: proinflammatory
macrophages (classically activated or M1) and those involved in
resolution and repair (alternatively activated or M2) (Gordon &
Taylor, 2005). M2 macrophages produce low levels of pro‐
inflammatory cytokines but high levels of arginase1 (Arg1),
mannose receptor (Mrc1 or CD206) and IL10, and have a higher
phagocytic capacity and a lower antigen presentation capacity
thanM1macrophages (Gordon & Taylor, 2005). The existence of
other macrophage phenotypes has been proposed that fit neither
the classical nor the alternative activation pattern (Mosser &
Edwards, 2008). The heterogeneity of atherosclerotic plaque
macrophages has been recognized for many years and several
types of macrophages have been found in atherosclerotic lesions
(Bouhlel et al, 2007; Khallou‐Laschet et al, 2010).

Regulator of calcineurin 1 (RCAN1) belongs to a family of
endogenous regulators of calcineurin activity (RCAN; previously
known as DSCR/MCIP/calcipressin/Adapt78 in mammals)
(Davies et al, 2007). The RCAN1 protein is highly conserved
(Davies et al, 2007), displaying 96% identity between human
andmouse (Strippoli et al, 2000). The human andmouse RCAN1
genes are expressed as two isoforms, RCAN1‐1 and RCAN1‐4,
that differ at their N terminus as a consequence of alternative
promoter usage and first exon usage (Davies et al, 2007; Fuentes
et al, 1997). RCAN1‐1 and RCAN1‐4 have different expression
patterns and different regulation mechanisms control their
expression. While RCAN1‐1 seems to be constitutively expressed
in most tissues, transcription of the RCAN1‐4 variant is induced
de novo by several stimuli that activate the calcineurin‐NFAT
pathway (Cano et al, 2005; Crawford et al, 1997; Ermak
et al, 2002; Esteban et al, 2011; Minami et al, 2004; Wang
et al, 2002; Yang et al, 2000). RCAN1 has been implicated in
important physiological and pathological processes, including
tumour growth and angiogenesis, sepsis, cardiac hypertrophy,
mast‐cell function, T‐cell survival, and synaptic plasticity and
memory (Baek et al, 2009; Harris et al, 2005; Hoeffer et al, 2007;
Ryeom et al, 2008; Yang et al, 2009). Rcan1 additionally plays an
essential role in the migration of VSMCs in response to
angiotensin II stimulation; moreover, Rcan1 genetic ablation
in the mouse confers resistance to abdominal aortic aneurysm
and to neointima formation in a restenosis model (Esteban
et al, 2011). Rcan1 in endothelial cells inhibits VEGF‐induced
migration and in vitro tube formation (Iizuka et al, 2004; Minami
et al, 2004). In contrast, Rcan1 knockdown in cancer cell lines
increases motility while its forced expression reduces their
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
motility and CN activity (Espinosa et al, 2009). Rcan1 thus
appears to have opposite roles in cell migration in different
settings. Since most studies have involved the simultaneous
inactivation of Rcan1‐1 and Rcan1‐4 or have examined the effect
of over‐expressing or knocking‐down only one of these isoforms,
it has not yet been possible to ascribe specific roles to one Rcan1
isoform and not the other.

Here, we investigated the contribution of Rcan1 to athero-
sclerosis development. We show that RCAN1 is induced in
human and mouse atherosclerotic tissues and, using a mouse
model of atherosclerosis and bone‐marrow (BM) transplantation
assays, we demonstrate that Rcan1 in haematopoietic cells
promotes atherosclerosis. We also present evidence that the pro‐
atherogenic action of Rcan1 is mediated by oxLDL‐uptake and
that macrophage polarization and trapping are central to its pro‐
atherogenic role.
RESULTS

RCAN1‐4 is upregulated in human and mouse atherosclerosis
lesions
To assess RCAN1 expression in human atherosclerotic lesions,
we compared human atherosclerotic coronary arteries with non‐
atherosclerotic coronary arteries and internal mammary arteries,
a vessel that does not develop atherosclerosis. RCAN1‐4 protein
expression was markedly higher in atherosclerotic vessels than
in non‐atherosclerotic coronary arteries and internal mammary
arteries (Fig 1A). Although RCAN1‐1 expression is usually
constitutive, its level also appeared to be higher in atheroscle-
rotic arteries, but the difference was less marked than for
RCAN1‐4 (Fig 1A). The protein expression differences were
accompanied by correspondingly higher expression of RCAN1‐1
and RCAN1‐4 mRNA in atherosclerotic arteries (Fig S1 of
Supporting Information).

To investigate the role of RCAN1 in atherogenesis, we used
theApoe�/�mousemodel (Plump et al, 1992; Zhang et al, 1992).
These mice develop atherosclerosis spontaneously, and the
appearance of lesions is accelerated by feeding them a
cholesterol‐rich diet. Like human familial hypercholesterolemia
patients, these mice develop lesions in the aortic valves (Getz &
Reardon, 2012). We fed 3‐month old Apoe�/� mice a high‐fat
diet (HFD) for 6 weeks and compared Rcan1 expression in the
aortic valves with that in wild‐type and Apoe�/� mice fed a
standard chow diet. Aortic valves of Apoe�/� mice fed an HFD
showed marked Rcan1 staining in cells close to areas of lipid
deposition, while staining was much weaker in the non‐
atherosclerotic valves of mice fed the control diet (Fig 1B, top
panels). More intense Rcan1 expression in the valves of HFD‐fed
mice was also evident upon analysis by confocal immunofluo-
rescence (Fig 1B, lower panels). Immunofluorescent staining of
plaques for markers of endothelial cells, VSMCs and macro-
phages revealed elevated Rcan1 expression in all three cell types
(Fig 1C). Quantitative PCR analysis of the aortic arch, which is
also predisposed to lesion formation in mice, revealed higher
Rcan1 expression in chow‐fed Apoe�/�mice than in wt C57BL/6
mice, and expression was higher still in Apoe�/� mice fed an
EMBO Mol Med (2013) 5, 1901–1917



Figure 1. RCAN1‐4 is induced in atherosclerotic human and mouse

arteries.

A. Immunoblot of RCAN1 in atherosclerotic and non-atherosclerotic human

coronary artery and in human internal mammary artery (hIMA). Protein

bands corresponding to RCAN1-1 and RCAN1-4 are indicated. a-ACTINwas

used as loading control.

B. The aortic sinus of Apoe�/�mice fed standard chow or a high-fat diet (HFD)

was immunostained for Rcan1. Representative images are shown of Rcan1

immunohistochemistry (top panels) and fluorescence microscopy (bottom

panels). Bar, 50mm.

C. Representative confocal immunofluorescence images of Rcan1 (red), lectin

(green), aSMA (green) and Mac3 (green) in aortic sinus lesions of HFD-fed

Apoe�/� mice. Merged images are also shown. Bar, 5mm.

D. Quantitative PCR analysis of Rcan1 mRNA expression in the aortic arch of

C57BL/6 and Apoe�/� mice fed standard chow or an HFD. mRNA amounts

were normalized to Hprt1 expression (means� SEM; n¼3). Student’s

t-test, �p¼0.013, ��p¼0.0019.

E. Representative Rcan1 immunoblot in the same tissues as in D.
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HFD (Fig 1D). As in human samples, western blot analysis of
Rcan1 expression in the aortic arch of these animals indicated
that Rcan1‐4 was strongly induced in atherosclerotic mice
(Fig 1E). In contrast, Rcan1‐1 expression was barely affected in
atherosclerosis (Fig 1E).

The subendothelial accumulation of oxLDLs is a crucial early
event in plaque formation. We therefore determined whether
oxLDL regulates Rcan1 expression in the major cell compart-
ments present in the plaque. Treatment of mouse primary
macrophages, VSMCs, and endothelial cells with oxLDL induced
the expression of Rcan1 mRNA and Rcan1‐4 protein in all three
cells types, but did not induce Rcan1‐1 protein (Fig 2).

Rcan1 inactivation reduces atherosclerotic lesion burden
To investigate the contribution of Rcan1 to atheroma formation
we compared Apoe�/� with Apoe�/�Rcan1�/� (double knock-
out) mice. Rcan1 targeting affected both isoforms and lack of
expression was confirmed in aorta and heart (Fig S2 of
Supporting Information). Apoe�/� and Apoe�/�Rcan1�/� mice
showed similar body weight increases after 6 weeks on an HFD
(Fig S3A of Supporting Information), and there were no
significant inter‐group differences in serum concentrations of
triglyceride, total and free cholesterol, high‐density lipoprotein
cholesterol and LDL cholesterol (Fig S3B–C of Supporting
Information). En face analysis of Oil Red O stained atheroscle-
rotic plaques revealed that aortic lesion size inApoe�/�Rcan1�/�

mice was significantly smaller than in Apoe�/� mice (Fig 3A).
Since the aortic sinus and ascending aorta are particularly prone
to atherosclerosis, we also compared atheroma formation in
these regions. Haematoxylin and eosin (H&E) staining of cross‐
sections revealed a significantly smaller lesion area in both
regions in Apoe�/�Rcan1�/� mice (Fig 3B–C).

To assess the progression of atheromas in Apoe�/� and
Apoe�/�Rcan1�/� mice, we determined the presence of macro-
phages and VSMCs and the lipid deposition pattern in the aortic
cusps, the region that contains the most advanced lesions in the
Apoe‐deficient model (Nakashima et al, 1994). The relative
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1903



Figure 2. Induction of Rcan1‐4 expression by oxLDL. Quantitative PCR and

representative immunoblot analysis of Rcan1 expression in cells isolated from

Apoe�/� mice and treated with 50mg/ml oxLDL:

A. VSMCs (n¼3),

B. Peritoneal macrophages (n¼3) and

C. Endothelial cells (n¼6). mRNA amounts were normalized to Hprt1

expression (means� SEM). Student’s t-test, �p¼0.007, ��p¼0.001,
���p¼0.0003.
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content ofmacrophages was lower inApoe�/�Rcan1�/� plaques,
whereas numbers of VSMCs were similar in the two genotypes
(Fig 4A). To confirm that Apoe�/�Rcan1�/� mice had less‐
advanced plaques, we classified lesions according to the Stary
method (Stary et al, 1994) into early plaques (grade I) containing
only macrophages; grade II lesions containing macrophages,
VSMCs and a few scattered cholesterol clefts; grade III
lesions containing macrophages, VSMCs and numerous
cholesterol clefts and advanced plaques (grade IV) containing
macrophages, VSMCs and a large lipid core (Fig 4B). After
6 weeks of HFD, � 42% plaques in Apoe�/� mice were grade IV
and only � 14% were grade I (Fig 4C). In contrast,
the proportion of grade IV plaques in Apoe�/�Rcan1�/� mice
was � 28% and that of grade I plaques was � 31% (Fig 4C).
These results therefore indicate that Rcan1 plays a key role in
atherosclerosis progression.
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
While Rcan1 targeting generates less advanced atherosclerotic
plaques, it might as well potentially decrease their stability.
Although theApoe�/�mouse is not particularly prone to develop
unstable plaques in the aorta (Getz & Reardon, 2012), it was
formally possible that Rcan1 deficiency might increase plaque
vulnerability. We therefore determined the effect of Rcan1
targeting on plaque stability. A key feature of unstable plaques is
thinning of the fibrous cap, usually accompanied by a reduction
in collagen content. The extent and thickness of the fibrous cap,
relative to plaque size, were larger in Apoe�/�Rcan1�/� mice
than in Apoe�/� mice (Fig 5A and Fig S4 of Supporting
Information), whereas the collagen content of the fibrous cap
was similar in both genotypes (Fig 5B–C). Moreover, lipid
content, determined by Oil Red staining, was lower in plaques of
Apoe�/�Rcan1�/� mice (Fig 5B) and these plaques had a higher
stability score (Fig 5D). Expression of metalloproteases MMP2
and MMP9, another index of plaque instability, was almost
identical in Apoe�/� and Apoe�/�Rcan1�/� plaques (Fig S5 of
Supporting Information) and no plaques displayed evidence of
haemorrhage (Fig S6 of Supporting Information). These data,
together with the lower macrophage content of Rcan1‐deficient
plaques, thus indicate that Rcan1 targeting does not induce
characteristics of unstable atherosclerotic plaques, and suggest
instead that Rcan1 inactivation might increase plaque stability.

Rcan1 regulates CD36 expression and mediates foam‐cell
formation
Oil Red O staining of intracellular lipids indicated that while
macrophages isolated from Apoe�/� and Apoe�/�Rcan1�/� mice
engulfed unmodified LDL similarly (Fig 6A), fewer Apoe�/

�Rcan1�/� macrophages engulfed oxLDL, and Apoe�/�Rcan1�/

� macrophages also appeared to load less oxLDL per cell
(Fig 6B). We measured intracellular oxLDL particles by Laurdan
generalized polarization (Laurdan GP) (Sanchez et al, 2007;
Sanchez et al, 2010), a confocal technique that measures water
content inside lipid compartments. Intracellular oxLDLs are
tightly packed and shift Laurdan GP towards red frequencies
(Ferretti et al, 2002), whereas other lipid compartments,
including intracellular membranes, contain more water and
give a yellow or green signal (Sanchez et al, 2007; Sanchez
et al, 2010). Macrophages exposed to oxLDL thus show its
presence in the cytosol as red dots (Fig 6C). Quantification of the
area occupied by oxLDL revealed that Apoe�/� macrophages
took up � 2.5 times more oxLDL than Apoe�/�Rcan1�/� cells
(Fig 6C).

OxLDL uptake and foam‐cell formation are mediated by the
class A and B scavenger receptors SR‐A and CD36 (Febbraio
et al, 2000; Suzuki et al, 1997). Real‐time PCR analysis detected
significantly higher levels of CD36 in the aortic arches ofApoe�/�

mice compared with Apoe�/�Rcan1�/� mice (Fig 6D), whereas
expression of SR‐A was similar in the two genotypes (Fig S7A of
Supporting Information). Accordingly, flow cytometry analysis
revealed that CD36 levels, but not those of SR‐A, were
significantly downregulated in Apoe�/�Rcan1�/� macrophages
(Fig 6E and Fig S7B of Supporting Information). Lentiviral re‐
expression of Rcan1‐1 and Rcan1‐4 in Apoe�/�Rcan1�/�

peritoneal macrophages (Fig 7A) increased cell surface
EMBO Mol Med (2013) 5, 1901–1917



Figure 3. Rcan1 deficiency decreases atherogenesis burden.

A. Representative Oil red O staining and quantification of lesion area in the aortas of Apoe�/� (n¼11) and Apoe�/�Rcan1�/�mice (n¼18) fed an HFD for 6 weeks.

Each data point denotes an individual mouse, and the horizontal bars denote the mean (long bar) and the SEM.

B. Representative H&E staining of the aortic sinus and quantification of the lesion area in this region (mean� SEM).

C. Representative H&E staining of the ascending aorta and quantification of lesion measured as intima/media ratio in this region in the same cohort of animals

(mean� SEM). Bars, 200mm. Student’s t-test, �p¼0.02, ��p¼0.0025, ���p¼0.0001.

Research Articlewww.embomolmed.org
Nerea Méndez-Barbero et al.

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on M

arch 12, 2025 from
 IP 87.220.10.17.
expression of CD36 (Fig 7B) and concomitantly increased the
numbers of oxLDL particles taken up by Apoe�/�Rcan1�/�

peritoneal macrophages (Fig 7C–D). These results thus support
that Rcan1 contributes to foam‐cell formation by regulating
CD36 expression.

Lipid accumulation by lesional macrophages can also reflect
altered cholesterol efflux. To investigate the contribution of Rcan1
to cholesterol efflux, foam‐cell formation was induced inApoe�/�

and Apoe�/�Rcan1�/� peritoneal macrophages by incubating
them with particles of acetylated LDL (acLDL), a non‐atheroscle-
rotic modified form of LDL, in the presence of 3H‐cholesterol.
Apoe�/�Rcan1�/� macrophages accumulated less 3H‐cholesterol
(Fig S8A of Supporting Information). Addition of HDL to the foam‐

cell cultures promoted cholesterol efflux, and this effect was
modestly stronger in Rcan1‐deficient cells (Fig S8B of Supporting
Information). Consistent with this effect, ABC transporter
expression was slightly higher in Apoe�/�Rcan1�/� peritoneal
macrophages and in atherosclerotic lesions in the aortic arch of
these animals (Fig S8C–D of Supporting Information).
EMBO Mol Med (2013) 5, 1901–1917 �
Rcan1 regulates oxLDL‐mediated inhibition of macrophage
migration
The presence of macrophages in atheroma plaques depends not
only on their recruitment, but also on their capacity to exit the
plaque, a process strongly impaired by oxLDL (Angeli et al, 2004;
Randolph, 2008). Since Rcan1 can either promote or repress cell
migration (Espinosa et al, 2009; Iizuka et al, 2004; Minami
et al, 2004), we first determined whether Rcan1 was
required for chemotactic macrophage migration. Apoe�/� and
Apoe�/�Rcan1�/� macrophages migrated similarly in Boyden
Transwell chambers in response to MCP‐1 or a combination of
MCP‐1 and fetal bovine serum (FBS) (Fig S9 of Supporting
Information). We next investigated whether Rcan1 participated
in oxLDL‐elicited inhibition of macrophage chemotaxis. While
exposure of Apoe�/� macrophages to oxLDL sharply reduced
their migration towards the chemotactic stimulus, Rcan1‐
deficient macrophages were not affected (Fig 8A–B). Accord-
ingly, in wound‐healing assays oxLDL inhibited random
migration of MCP1‐treated Apoe�/� macrophages, but not that
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1905



Figure 4. Rcan1 deficiency results in less‐advanced plaques.

A. Quantification of neointimal macrophage and VSMC content in lesions of the aortic sinus of Apoe�/� (n¼11) and Apoe�/�Rcan1�/�mice (n¼18) fed an HFD for

6 weeks. Student’s t-test, �p¼0.017.

B. Representative images of Masson’s trichrome, anti-Mac3 and anti-SMA staining of lesions of the aortic sinus classified according to the Stary method: grade I

(mostly foam cells), grade II (foam cells, VSMCs and few cholesterol clefts), grade III (foam cells, VSMCs and numerous cholesterol clefts) and grade IV (lipid

core). Bars, 50mm.

C. Classification of aortic sinus lesions according to the Stary method in the cohort of Apoe�/� and Apoe�/�Rcan1�/� animals shown in Fig 3.
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Figure 5. Rcan1 deficiency does not decrease plaque stability.

A. Representative H&E staining and quantification of fibrous cap area of

lesions in the aortic sinus of Apoe�/� (n¼25 valves) and Apoe�/�Rcan1�/�

mice (n¼45 valves) fed an HFD for 6 weeks. Data are shown relative

to the lesion area (means� SEM). Student’s t-test, ��p¼0.0012.

Thick and thin dotted lines, respectively, delimit the fibrous cap (FC) and

lesion.

B. Representative images of Oil Red and Masson’s trichrome staining of

cryocut cross-sections of the aortic arch lesions of Apoe�/� (n¼15) and

Apoe�/�Rcan1�/� mice (n¼17) fed an HFD for 6 weeks. Bar, 50mm.

C. Quantification of collagen content in the fibrous cap of these lesions

(mean� SEM).

D. Plaque stability score determined by collagen content divided by Oil

Red staining area of the same lesions (mean� SEM; Student t-test,
�p¼0.048).
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of Apoe�/�Rcan1�/� cells, as revealed by larger numbers of
Apoe�/�Rcan1�/� cells invading the denuded area (Fig S10 of
Supporting Information). In the Transwell assays neither LDL
nor acLDL significantly altered migration of macrophages of
either genotype towards the chemoattractant (Fig 8A–B). These
data thus suggest that Rcan1 does not directly regulate
macrophage migration, but is a central mediator of oxLDL‐
elicited inhibition of their egress from atherosclerotic plaques.

Cell migration is a complex process that involves cellular
spreading and cycles of formation and disruption of focal
adhesion contacts (Stossel, 1994). To characterize the mecha-
nisms by which Rcan1 mediates oxLDL‐induced inhibition of
macrophage chemotaxis, wemeasured its role in oxLDL‐induced
cell spreading. Spreading of Apoe�/� macrophages, but not that
of Apoe�/�Rcan1�/� cells, was readily induced within 30min of
exposure to oxLDL (Fig 8C). Automated quantification of
macrophage spreading revealed significant differences between
Apoe�/� and Apoe�/�Rcan1�/� macrophages from early time
points (Fig 8D).

Rcan1�/� macrophages express anti‐inflammatory phenotype
markers
Although several types of macrophages have been detected in
atherosclerotic lesions, macrophages with a classic M1‐like pro‐
inflammatory phenotype appear to be the most abundant
(Waldo et al, 2008). Given that oxLDL increases the expression
of M1 markers (Chase et al, 2002) and Apoe�/�Rcan1�/�

macrophages ingest oxLDL less efficiently than Apoe�/�

macrophages, we postulated that atherosclerotic lesions of
Apoe�/�Rcan1�/� mice might contain macrophages with a
phenotype different from those of Apoe�/�mice. To test this, we
analysed the expression of the anti‐inflammatory phenotype
markers Mrc1 and IL‐10 in aortic cusps of Apoe�/� and
Apoe�/�Rcan1�/� mice. Expression of both markers was higher
in lesions from Apoe�/�Rcan1�/� mice (Fig 9A–B), and IL‐10
levels were also higher in the aortic arch of atherosclerotic
Apoe�/�Rcan1�/� mice (Fig S11 of Supporting Information).
These data suggest that lesions in Apoe�/�Rcan1�/� mice are
enriched in macrophages with a rather anti‐inflammatory
phenotype.

We next investigated the possible participation of Rcan1 in
macrophage polarization. Expression of IL‐10 and Mrc1 was
significantly higher in Apoe�/�Rcan1�/� macrophages com-
pared with Apoe�/� cells (Fig 9C), whereas Apoe�/�Rcan1�/�

macrophages expressed lower levels of Mcp‐1 levels (Fig 9C).
Further consistent with an anti‐inflammatory phenotype,
Apoe�/�Rcan1�/� macrophages showed higher expression of
Arg1 (Fig S12A of Supporting Information), modestly lower
antigen presentation (Fig S12B of Supporting Information) and
higher phagocytic activity (Fig S12C of Supporting Information).
Apoe�/�Rcan1�/� cells also expressed higher levels of iNos, a
marker of pro‐inflammatory M1 macrophages (Fig 9C), but iNos
expression in atherosclerotic lesions of the aortic arch was
almost identical in Apoe�/� and Apoe�/�Rcan1�/� mice (Fig S13
of Supporting Information). It thus seems that Rcan1 ablation
might contribute to iNos induction by thioglycolate ex vivo, but
not to its induction by proatherogenic stimuli in vivo.
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1907



Figure 6. Rcan1 mediates macrophage uptake of oxLDL.

A, B. Apoe�/� and Apoe�/�Rcan1�/� peritoneal macrophages were exposed to (A) native LDL or (B) oxLDL for 24 h and then Oil Red O stained. Representative

images and quantification are shown of stained cells in three independent experiments (mean� SEM; Student’s t-test, ��p¼0.0018). Bars, 20mm.

C. Apoe�/� and Apoe�/�Rcan1�/� peritoneal macrophages cultured in medium alone (control) or containing oxLDL were stained with Laurdan. Representative

Laurdan GP images are shown with quantification of the area covered by oxLDL (red dots) (n¼20; mean� SEM; Student’s t-test, ���p¼0.0001). Black bar,

10mm.

D. Quantitative PCR analysis of CD36 expression in the aortic arch of atherosclerotic Apoe�/� (n¼12) and Apoe�/�Rcan1�/� mice (n¼13) pooled from three

independent experiments. mRNA amounts were normalized to m36B4 expression (means� SEM). Student’s t-test �p¼0.039.

E. Representative flow cytometry fluorescence histograms of CD36-stained macrophages of the indicated genotypes and quantification of the median

fluorescence levels (n¼3; mean� SEM; Student’s t-test, �p¼0.036).
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Figure 7. Rcan1 re‐expression in Apoe�/�Rcan1�/�macrophages increases

CD36 expression and the uptake of oxLDL. Apoe�/�Rcan1�/� peritoneal

macrophages were transduced with lentiviruses encoding GFP or Rcan1-1-

IRES-GFP plus Rcan1-4-IRES-GFP.

A. Representative immunoblot analysis of Rcan1 expression in these cells.

B. Quantification of the normalized median fluorescence levels of CD36

determined by flow cytometry in the GFPþ population (n¼4; mean

� SEM; Student’s t-test �p¼0.02).

C, D. (C) Representative Laurdan GP images and (D) quantification of the area

covered by oxLDL (red dots) in GFP-F4/80 double-positive cells after

culture in the presence of oxLDL (n¼3; mean� SEM; Student’s t-test,
�p¼0.01). Scale bar, 10mm.
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Transplantation of Rcan1�/� BM cells confers resistance to
atherosclerosis
To test the possible promotion of atherosclerosis by macro-
phage‐expressed Rcan1, we reconstituted the BM of 2‐month old
lethally irradiated Apoe�/� mice with BM‐derived cells from
Apoe�/�Rcan1�/� or Apoe�/� mice, thereby generating
Apoe�/� mice with either Apoe�/�Rcan1�/� macrophages
(Rcan1�/�!Apoe�/�) or Apoe�/�Rcan1þ/þ macrophages
(Rcan1þ/þ!Apoe�/�). Since RCAN1 has been reported to
induce GSK3b expression (Ermak et al, 2006) and this protein
modulates haematopoietic progenitor cell function (Lapid
et al, 2013), it is formally possible that Rcan1 ablation influences
the nature of BM reconstitution. However, chimeric
Rcan1�/�!Apoe�/� mice showed no significant reduction in
EMBO Mol Med (2013) 5, 1901–1917 �
Gsk3b expression (Fig S14A of Supporting Information), and
blood cell populations of reconstituted Rcan1þ/þ!Apoe�/� and
Rcan1�/�!Apoe�/� mice were indistinguishable (Fig S14B–D
of Supporting Information).

After reconstitution for 4 week, mice were fed an HFD
for 6 weeks. Chimeric Rcan1�/�!Apoe�/� and Rcan1þ/þ!
Apoe�/� mice showed no significant differences in the body
weight gain or in the serum concentrations of triglyceride, total
cholesterol, HDL or LDL (Fig S15 of Supporting Information). En
face analysis of Oil Red O aorta staining revealed markedly
smaller lesion area in mice lacking expression of Rcan1 in BM‐

derived cells (Fig 10A). Cross‐sectional analysis by H&E staining
indicated that lesion size in the aortic sinus and the intima/
media ratio in the ascending aorta were significantly smaller in
Rcan1�/�!Apoe�/� mice than in Rcan1þ/þ!Apoe�/� mice
(Fig 10B–C). These data demonstrate that Rcan1 expression in
the haematopoietic cell compartment plays a major role in
atherosclerosis progression.
DISCUSSION

Atherosclerosis is a complex disease involving lipid accumula-
tion and the central participation of endothelial cells, VSMCs and
monocyte‐derived macrophages. Our results demonstrate that
RCAN1 is induced in human and mouse atherosclerosis and
strongly suggest that Rcan1 promotes disease progression. In
addition, we have identified several mechanisms underlying
Rcan1‐dependent atherosclerosis development. In particular, we
have shown that Rcan1 mediates CD36 expression, foam‐cell
formation and oxLDL‐elicited inhibition of macrophage migra-
tion. Moreover, Rcan1 ablation promotes expression of IL‐10 and
other anti‐inflammatory markers, including Mrc1, in macro-
phages and lesions.

Rcan1 plays a critical role in vascular wall remodelling
associated with aneurysm and neointima formation after
angioplasty; and notably, BM transplantation experiments showed
that haematopoietic‐cell expression of Rcan1 is not required for
aneurysm (Esteban et al, 2011). In contrast, our current findings
show that Rcan1 expression in BM‐cells is critical for atherogene-
sis. Our results do not however exclude a proatherogenic role of
Rcan1 in VSMCs or endothelial cells. The eventual production of
tissue‐specific Rcan1‐targeted mice will help to resolve this
question. The different requirements for BM‐cell expression of
Rcan1 in atherosclerosis and aneurysmmight be attributable to the
pivotal role of Rcan1 in foam‐cell formation, a central feature of
atherosclerosis but not of aneurysm.

Although human and mouse atherosclerosis differ in several
aspects, critical features are shared, and our results indicate that
one such feature is RCAN1 induction. Moreover, we demon-
strate that oxLDL, one of main stimuli of atherosclerosis,
strongly induces Rcan1‐4 not only in macrophages and VSMCs,
but also in endothelial cells. Althoughmost leukocytes in human
and mouse atherosclerotic lesions are macrophages, plaques
also contain lymphocytes, neutrophils and mast cells (Woollard
& Geissmann, 2010). Whether Rcan1 is also induced in these
cells remains to be determined.
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1909



Figure 8. Macrophage migration is inhibited by oxLDL in an Rcan1‐dependent manner.

A. Representative images of Hoechst-stained Apoe�/� and Apoe�/�Rcan1�/� macrophages, treated as indicated, on the lower filter surface of chemotaxis

chambers (Bar, 100mm).

B. Quantification of migrated macrophages in 10 fields per condition. Data are shown relative to non-treated cells (mean� SEM, n¼4; one-way ANOVA,
��p¼0.002, ���p<0.00001).

C,D. Apoe�/� and Apoe�/�Rcan1�/�macrophages were plated on serum-coated coverslips, incubated with oxLDL at 37˚C and then photographed at the indicated

times. (C) Representative photomicroscopy images are shown (Bar, 20mm) and (D) quantification of the spreading of these cells (mean� SEM, n¼3;

two-way ANOVA, �p¼0.019, ��p¼0.002, ##p¼0.003).
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Whereas RCAN1‐1 is usually constitutive, RCAN1‐4 expres-
sion is induced by several stimuli. Our data suggest that
both RCAN1 isoforms might be upregulated in atherosclerotic
lesions. However, only Rcan1‐4 appears to be upregulated by
atherogenic oxLDL in macrophages, endothelial cells and
VSMCs. The presence of RCAN1‐1 in lesions might indicate
that in vivo this isoform is induced together with RCAN1‐4 in
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
macrophages, endothelial cells or VSMCs. Alternatively,
the high RCAN1‐1 levels in lesions might reflect recruitment
of other cell populations with constitutively high RCAN1‐1
expression.

Our findings provide in vivo and in vitro evidence that Rcan1
is pro‐atherogenic and that its genetic ablation deactivates
several important pathological mechanisms. Rcan1 deficiency
EMBO Mol Med (2013) 5, 1901–1917



Figure 9. Increased expression of alternative macrophage polarization

markers in Apoe�/�Rcan1�/� lesions and isolated macrophages.

A, B. Representative immunofluorescence staining of (A) IL-10 and (B) Mrc1

in aortic sinus lesions of Apoe�/� and Apoe�/�Rcan1�/�mice fed an HFD.

Bars, 20mm.

C. Quantitative PCR analysis of IL-10, Mrc1, Mcp-1 and iNOS mRNA

expression in Apoe�/� and Apoe�/�Rcan1�/� peritoneal macrophages.

mRNA amounts were normalized to m36B4 expression (mean� SEM;

n¼3). Student’s t-test, ��p¼0.0078, ##p¼0.0058, ���p¼0.0007,
###p¼0.0009.
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inhibits macrophage engulfment of oxLDL and hence foam‐cell
formation, and Rcan1�/� macrophages are resistent to oxLDL‐
mediated inhibition of migration towards chemotactic stimuli, a
feature related to foam‐cell egress from the plaque in vivo.
Finally, in the absence of Rcan1, macrophages appear to
acquire features of a predominantly anti‐inflammatory pheno-
type. Consistent with this view, Rcan1 inactivation in the Apoe‐
deficient mouse atherosclerosis model attenuates atherosclerotic
lesion burden in terms both of lesion area and severity.
While most lesions of Apoe�/� mice were advanced
(grade IV), Apoe�/�Rcan1�/� mice exhibited a greater number
EMBO Mol Med (2013) 5, 1901–1917 �
of early lesions (grade I) without showing any evidence of
increased plaque instability.

The lower Oil Red O surface staining and the lower
content of extracellular lipids in atherosclerotic lesions of
Apoe�/�Rcan1�/� mice are consistent with the relatively low
uptake of oxLDL by Apoe�/�Rcan1�/� macrophages. Interest-
ingly, these macrophages have a similar capacity to engulf native
LDL. Given that endocytic uptake of native LDL and oxLDL
occurs via different receptors (Greaves & Gordon, 2009), our
data suggest that Rcan1 promotes the expression or activity of
receptors specific for chemically modified forms of LDL. This
conclusion is supported by our findings that CD36, a scavenger
receptor involved in the uptake of modified forms of LDL and
foam‐cell formation (Febbraio et al, 2000), is downregulated in
Rcan1 deficient macrophages, while re‐expression of Rcan1‐1
and Rcan1‐4 in these cells increased CD36 expression and foam‐

cell formation. Cholesterol efflux was weakly increased in
Apoe�/�Rcan1�/� macrophages and the levels of the cellular
transporters involved in this process were not significantly
increased in these cells or in atherosclerotic lesions. Thus, the
contribution of cholesterol efflux to Rcan1‐mediated regulation
of foam‐cell formation remains uncertain.

The inflammatory nature of atherosclerotic disease is widely
accepted. During the resolution of inflammation, macrophages
egress from the inflamed site after engulfing pathogens, toxins or
apoptotic cells. However, cholesterol‐engorgedmacrophages fail
to egress after clearing lipids and hence fail to resolve the
inflammatory process (Angeli et al, 2004). Egress of macro-
phages from plaques is actively inhibited during hypercholes-
terolemia and this inhibition has been attributed, at least in part,
to oxLDL loading into macrophages (Park et al, 2009). Our data
suggest that Rcan1 might facilitate the trapping of lipid‐laden
macrophages in atherosclerotic lesions by mediating oxLDL
uptake, macrophage spreading and inhibition of their egress.
Our data thus suggest that Rcan1 might participate in a positive
feedback loop in which Rcan1‐mediated accumulation of oxLDL
particles inhibits foam‐cell egress from the plaque, resulting in
increased exposure of the trapped foam cells to oxLDL and
increased engulfment of these particles.

Most lesional macrophages in advanced plaques display a
proinflammatory M1 phenotype, whereas alternatively activated
M2 macrophages are more abundant in early lesions (Khallou‐
Laschet et al, 2010; Waldo et al, 2008). An additional
macrophage subtype, whose gene expression program differs
from that of M1 and M2 cells and which shows enhanced
phagocytotic and chemotactic capacities, has also been reported
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1911



Figure 10. Atherosclerosis requires Rcan1 expression in BM‐derived cells.

A. Representative Oil red O staining and quantification of the lesion area in the aortas of Apoe�/� mice transplanted with BM from Apoe�/� (n¼16) or

Apoe�/�Rcan1�/� (n¼15) mice after 6 weeks on an HFD. Each data point denotes an individual mouse, and the horizontal bars denote the mean (long bar) and

the SEM.

B. Representative H&E images and lesion area quantification in aortic sinus sections of these mice. Quantification is shown as mean� SEM (n¼13). Bar, 200mm.

C. Representative H&E images and quantification of lesion measured as intima/media ratio. Data are means� SEM (n¼12). Bar, 200mm. Student’s t-test,
�p¼0.02, #p¼0.024, ���p¼0.0001.
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in advanced plaques (Kadl et al, 2010), and analysis of CD163
and CD206 (MRC1) distribution in human carotid plaque
macrophages also suggested that there may be at least three
macrophage phenotypes present in human plaques (Bouhlel
et al, 2007). Our results show elevated expression of IL‐10 and
Mrc1 in lesions of Rcan1 deficient mice and no increase of iNos.
Since IL‐10 is a powerful anti‐inflammatory cytokine and its
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
genetic ablation in mice promotes atherosclerotic lesion
formation (Mallat et al, 1999), these results suggest that
Rcan1 deficiency promotes the presence of macrophages with
anti‐inflammatory properties in the atheroma plaque, a
conclusion consistent with the retarded progression of lesions
in Apoe�/�Rcan1�/� mice. Whether these IL‐10‐producing cells
are M2‐like macrophages or an additional macrophage type
EMBO Mol Med (2013) 5, 1901–1917



Figure 11. Model depicting the contribution of

Rcan1 to plaque formation. Rcan1 mediates

expression of the oxLDL receptor CD36 in

macrophages, thus regulating oxLDL uptake. Low

uptake of oxLDL by Rcan1-deficient macrophages

results in macrophage polarization to a phenotype

distinct from M1 or M2. These cells display

numerous anti-inflammatory features, including

high levels of IL10 and MRC1, low levels of MCP1,

pronounced phagocytosis activity and weak

antigen presentation (Ag pres). However, these

macrophages also show increased iNOS expression.

Rcan1 ablation also decreases macrophage

accumulation, likely by preventing their

entrapment and/or the MCP1-mediated

recruitment of additional macrophages. The lower

accumulation of macrophages in the plaque and

their conversion into predominantly anti-

inflammatory cells might account for the delayed

plaque progression.
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remains to be determined. Supporting an M2‐like identity,
Apoe�/�Rcan1�/� macrophages expressed high levels of Mrc1
and arginase‐1 and low levels of Mcp1, and showed elevated
phagocytic activity and a low antigen presentation capacity.
However, M2 macrophages appear to take up oxLDL
more efficiently than M1 cells (van Tits et al, 2011), whereas
Apoe�/�Rcan1�/� macrophages engulfed less oxLDL than
Apoe�/� cells. Together, our data suggest that Rcan1
deficiency promotes a macrophage polarization distinct from
M1 and M2.

The precise molecular mechanism involved in Rcan1
regulation of oxLDL uptake, foam‐cell trapping and macrophage
polarization has yet to be identified. Rcan1 was first identified as
a negative regulator of CN activity (Rothermel et al, 2000).
However, additional studies indicated that Rcan1 can also
activate CN (Kingsbury & Cunningham, 2000; Vega et al, 2003)
and our previous studies showed that Rcan1 neither activates
nor inhibits CN in aortic tissues or primary VSMC cultures
(Esteban et al, 2011). Our present results show that the absence
of Rcan1 has no significant effect on CN activity in unstimulated
cells or lipopolysaccharide‐stimulated macrophages (Fig S16 of
Supporting Information). Rcan1 thus appears to promote
atherosclerosis without interfering with CN activity, perhaps
through its interaction with other Rcan1‐interacting proteins
implicated in gene activation, such as Raf‐1 (Cho et al, 2005),
14‐3‐3 (Abbasi et al, 2006) and NF‐kB‐inducing kinase (Lee
et al, 2008).

Our results show that RCAN1 is induced in human andmouse
atherosclerotic vessels, and suggest that Rcan1 regulates CD36
expression and thus contributes to the uptake of pathogenic
EMBO Mol Med (2013) 5, 1901–1917 �
forms of LDL cholesterol by macrophages in the plaque (Fig 11).
The lower lipid uptake by Rcan1‐deficient cells would attenuate
their differentiation into pro‐inflammatory macrophages and
their accumulation in the plaque (Fig 11). Instead, expression by
Rcan1‐deficient macrophages of the anti‐inflammatory cytokine
IL‐10 might inhibit further expansion of the plaque (Fig 11).
These findings identify RCAN1 as an important regulator of
atherosclerosis and strongly suggest that therapies aimed at
inhibiting RCAN1 expression or function might significantly
reduce atherosclerosis burden.
MATERIALS AND METHODS

An expanded Materials and Methods Section is available in the

Supporting Information.

Animal procedures
Animal studies were in accordance with the guidelines of the EU on

animal care and approved by the institutional ethics committee.

Double‐knockout Apoe�/�Rcan1�/� mice were previously described

(Esteban et al, 2011). Rcan1 targeting constitutively ablates the

expression of both Rcan1-1 and Rcan1-4 in every cell (Porta

et al, 2007). To accelerate atherosclerosis, 3‐month‐old mice were

fed an HFD (10.8% total fat, 0.75% cholesterol) for 6 weeks. BM

transplantation was performed as previously described (Esteban

et al, 2011). After 4 weeks on chow diet, transplanted mice were

placed on the HFD for 6 weeks. Plasma concentrations of free

cholesterol, total cholesterol, LDL‐cholesterol, HDL‐cholesterol and

triglycerides were measured enzymatically.
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1913



The paper explained

PROBLEM:

Atherosclerosis, the underlying cause of myocardial infarction,

stroke and peripheral vascular disease, is the major cause of

morbidity and mortality in the developed world. It is a complex

inflammatory disease characterized by accumulation of oxidized

LDL (oxLDL) that triggers activation of the vascular endothelium

and migration of monocytes into the lesion. These monocytes

take up oxLDL and become lipid-laden foam cells that recruit

smooth muscle cells and additional leukocytes. As RCAN1 is a

signalling intermediate implicated in cell migration, we

hypothesized that RCAN1 might contribute to atherosclerosis

development.

RESULTS:

We show that RCAN1 is induced in atherosclerotic human vessels

and in the atherosclerotic arteries of a mouse model of

atherosclerosis. Rcan1 is expressed in vivo in lesional macro-

phages, endothelial cells and vascular smooth muscle cells and

was induced in vitro by treatment of these cells with oxLDLs.

Rcan1 genetic deletion reduced the extent and severity of

atherosclerosis in mice, and this effect was mechanistically

linked to diminished expression of the oxLDL receptor in

macrophages (CD36), decreased oxLDL uptake, resistance to

oxLDL-mediated inhibition of macrophage migration and a shift

of macrophage polarization towards an anti-inflammatory

phenotype. Importantly, transplantation of Rcan1-deficient

bone-marrow-derived cells greatly inhibited atherosclerosis.

IMPACT:

Our data define a major role for haematopoietic Rcan1 in

atherosclerosis and suggest that Rcan1 might facilitate the

trapping of lipid-ladenmacrophages in atherosclerotic lesions by

upregulating CD36-mediated oxLDL uptake and thereby trap-

ping proinflammatory macrophages in atherosclerotic lesions.

Our findings strongly suggest that future therapies aimed at

inhibiting RCAN1 expression or function might significantly

reduce atherosclerosis burden.
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Human samples
Human coronary arteries and internal mammary arteries were

collected from patients undergoing heart transplant and coronary

artery bypass‐graft surgery, respectively, at the Hospital de la Santa

Creu i Sant Pau (Barcelona, Spain). The studies were approved by the

Ethics Committee and were conducted in accordance with the Helsinki

Declaration.

Histological analysis
Cross‐sections (5‐mm) of paraffin‐embedded or cryopreserved samples

of mouse hearts and aortae were immunostained or evaluated by

conventional Masson’s Trichrome, H&E or Oil Red staining. Cross‐

sections were stained with antibodies and reagents specific for Rcan1,

SMA, Mac3, Mrc1, IL‐10, Ter‐119 or endothelial cells and processed for

either immunohistochemistry or immunofluorescence using standard

procedures.

Cell procedures
VSMCs were extracted from abdominal and thoracic aortas. Mouse

lung endothelial cells were obtained from lung by selection with

magnetic beads. Mouse peritoneal macrophages were collected by

peritoneal lavage. Before stimulation, cells were rendered quiescent by

culture in DMEM without FBS.

Western blot analysis
Human specimens and mouse aorta samples for western blotting

were snap‐frozen in liquid nitrogen and stored at �80°C. Protein

extracts were obtained by tissue lysis in ice‐cold lysis buffer,

separated under reducing conditions on SDS‐polyacrylamide

gels and transferred to nitrocellulose membranes. Proteins were

detected with anti‐Rcan1, anti‐Gsk3‐b, anti‐a‐actin, anti‐
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
alpha‐tubulin, anti‐PSF primary antibodies and HRP‐conjugated

secondary antibodies. Immunocomplexes were detected by

chemiluminescence.

Atherosclerotic lesion analysis
Hearts from euthanized mice were perfused through the left ventricle

with PBS. After fixing in 4% paraformaldehyde overnight at 4°, the

aortas were thoroughly cleaned to remove all adventitial fat and

connective tissue. Aortas were whole‐mount stained with 0.2% Oil Red

O in 80% methanol, opened longitudinally and pinned to black wax to

expose the entire luminal surface. Images were acquired and the area

of atherosclerotic plaques was measured using ImageJ software.

Migration assays
Migration of peritoneal macrophages was measured in a modified

Boyden chamber using Transwell inserts with a 5mm‐pore membrane.

Cells (1–2�105 per well) in AlphaMEM supplemented with 0.1% BSA

were loaded into the migration chamber with 50mg/ml of lipoprotein

(LDL, oxLDL or acLDL). The number of migrated cells was counted on

fluorescence microscopy photographs of 10 randomly selected fields.

For wound healing assays, a single scrape wound was made on

peritoneal macrophage monolayers. After washing with PBS, cells were

incubated with 2% FBS plus 100ng/ml MCP‐1 with or without 50mg/

ml oxLDL. Macrophage motility was monitored by time‐lapse video-

microscopy. The number of cells that migrated into the denuded area

was counted using ImageJ.

Spreading assays
Peritoneal macrophages were placed on serum‐coated slides and

allowed to attach. After stimulation with 50mg/ml oxLDL, macro-

phages were fixed in 4% paraformaldheyde and stained with
EMBO Mol Med (2013) 5, 1901–1917
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fluorescein‐conjugated phalloidin. Cell perimeter and surface area

were measured to determine cell spreading according to the formula

Spreading ¼ perimeter2= 4� p� areað Þ:

Foam‐cell formation
Peritoneal macrophages were plated on coverslips, incubated with

50mg/ml LDL or oxLDL for 24h, fixed in 4% paraformaldehyde and

stained with Oil red O and counterstained with haematoxylin.

Laurdan GP microscopy
Laurdan GP microscopy has been described previously (Bagatolli

et al, 2003; Sanchez et al, 2007). Peritoneal macrophages were

cultured in the presence of 1mM Laurdan in serum‐free medium.

Laurdan fluorescence was excited with a mode‐locked titanium‐

sapphire laser set at 780nm and its emission collected at 445–465nm

and 474–514 nm. GP images were obtained with an ALBA microscope

equipped with a 63� water objective and analysed using Image‐J

software.

Quantitative PCR
Real‐time quantitative RT‐PCR was performed using a Prime Time

qPCR assay specific for human GAPDH and TaqMan Gene Expression

assays specific for human RCAN1-1, RCAN1-4 and mouse Rcan1 and

Hprt1. SYBR Green was used for RT‐PCR detection of mouse CD-36, SR-

A, ABCA, ABCG, IL-10, Mrc1, Arg1, Mcp-1, iNos and m36B4. Calculations

were made from measurements of 3 replicates of each sample. The

amount of target mRNA in samples was estimated by the 2CT

relative quantification method using GAPDH, m36B4 or Hprt1 for

normalization.

Statistical analysis
All values are expressed as means� SEM. Differences were evaluated

using one‐way or two‐way analysis of variance (ANOVA) and

Bonferroni’s post hoc test (experiments with �3 groups) or the

Student’s t‐test, as appropriate for the data. Statistical significance was

assigned at p<0.05.
0.10.17.
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