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ABSTRACT

Background: Tumor necrosis factor-like weak inducer of apoptosis (Tnfsf12; TWEAK) and its receptor Fibroblast
growth factor-inducible 14 (Tnfsfl12a; Fn14) participate in the inflammatory response associated with vascular
remodeling. However, the functional effect of TWEAK on vascular smooth muscle cells (VSMCs) is not completely
elucidated.
Methods: Next generation sequencing-based methods were performed to identify genes and pathways regulated
by TWEAK in VSMCs. Flow-citometry, wound-healing scratch experiments and transwell migration assays were
used to analyze VSMCs proliferation and migration. Mouse wire injury model was done to evaluate the role of
TWEAK/Fn14 during neointimal hyperplasia.
Findings: TWEAK up-regulated 1611 and down-regulated 1091 genes in VSMCs. Using a gene-set enrichment
method, we found a functional module involved in cell proliferation defined as the minimal network connecting
top TWEAK up-regulated genes. In vitro experiments in wild-type or Tnfrsf12a deficient VSMCs demonstrated
that TWEAK increased cell proliferation, VSMCs motility and migration. Mechanistically, TWEAK increased
cyclins (cyclinD1), cyclin-dependent kinases (CDK4, CDK6) and decreased cyclin-dependent kinase inhibitors
(p15™%4B) mMRNA and protein expression. Downregulation of p15™“® induced by TWEAK was mediated by
mitogen-activated protein kinase ERK and Akt activation.
Tnfrsf12a or Tnfsf12 genetic depletion and pharmacological intervention with TWEAK blocking antibody reduced
neointimal formation, decreasing cell proliferation, cyclin D1 and CDK4/6 expression, and increasing p15™*4® ex-
pression compared with wild type or IgG-treated mice in wire-injured femoral arteries. Finally, immunohisto-
chemistry in human coronary arteries with stenosis or in-stent restenosis revealed high levels of Fn14, TWEAK
and PCNA in VSMCs enriched areas of the neointima as compared with healthy coronary arteries.
Interpretation: Our data define a major role of TWEAK/Fn14 in the control of VSMCs proliferation and migration
during neointimal hyperplasia after wire injury in mice, and identify TWEAK/Fn14 as a potential target for
treating in-stent restenosis.
Fund: ISCiii-FEDER, CIBERCV and CIBERDEM.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pathological vascular wall remodeling is a critical feature of vascular stenosis, abdominal aortic aneurysm, and vasculopathy after transplan-
diseases such as atherosclerosis, post-angioplasty restenosis, vein graft tation [1]. Vascular smooth muscle cells (VSMCs) are key players in
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adult vascular remodeling due to their remarkable phenotypic plasticity
[2]. Under physiological conditions, VSMCs are quiescent, contractile
and non-migratory in the vessel wall. However, in response to vascular
injury the resident medial VSMCs are activated proliferating and mi-
grating into the intima, where they accumulate and subsequently pro-
duce proinflammatory cytokines and chemokines and abundant
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extracellular matrix proteins to form the neointima [3,4]. Intimal hyper-
plasia formation and restenosis can be controlled by the use of drug-
eluting stents. However, the in-stent restenosis still occur in 10% pa-
tients and remained a significant clinical problem to be solved [5].

Several studies have shed light on some of the pathophysiological
mechanisms that are involved in VSMCs proliferation and migration.
Nevertheless the identification of molecular mediators that link these
coordinated responses of VSMCs to injury could help to design new
and selective treatment strategies to prevent VSMCs activation [6].

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK,
Tnfsf12) and its cognate receptor fibroblast growth factor-inducible 14
(Fn14, Tnfrsf12a) belong to the tumor necrosis factor superfamily of pro-
teins [7]. Several physiological and pathological processes are induced
by TWEAK depending of the cell type and environment [8]. In the vascu-
lature, TWEAK is expressed in both the healthy and the pathological ar-
terial wall [9]. Whereas Fn14 is low or absent in normal arteries, it is
highly abundant under pathological conditions including atherosclero-
sis and abdominal aortic aneurysm [9-11]. Several stimuli such as endo-
thelial growth factor, Interferon-v, Interleukin-13, thrombin and
angiotensin stimulate Fn14 expression in cultured VSMCs [7,9]. During
pathological vascular wall remodeling, TWEAK/Fn14 axis participates
in regulating endothelial dysfunction, inflammation, angiogenesis and
thrombosis [12]. Thus, TWEAK injection aggravates atherosclerotic
plaque development in hyperlipidemic apolipoprotein-E deficient
mice by boosting the inflammatory response, among other detrimental
processes [13]. Conversely, lack of Tnfsf12 gene or in vivo neutralizing
using Fn14 and TWEAK antibodies reduces atherosclerotic lesion size
and increases plaque stability [11,13,14]. In addition, loss-of function ap-
proaches have demonstrated that TWEAK/Fn14 axis participates in the
development of abdominal aortic aneurysms in mice through the regu-
lation of the proinflammatory and metalloproteinase environment [10].

Thus, the TWEAK/Fn14 axis exerts a key regulatory role during vas-
cular remodeling, nonetheless the TWEAK-Fn14 downstream mecha-
nisms are yet to be defined. Therefore, we performed a genome-wide
RNA sequencing screen in cultured VSMCs aiming to identify the molec-
ular mediators of the TWEAK/Fn14 axis. The in-silico analysis of the
RNA-seq data using network biology software demonstrates that one
of the main biological processes modulated by TWEAK is associated to
cell proliferation. In line with this analysis, we mechanistically demon-
strate that TWEAK in VSMCs increases cyclin D1 and CDK4/6 and de-
creases p15™B expression, which in turn leads to activate VSMCs
proliferation and migration. In addition, we validated our results
in vivo since we show in this work that TWEAK accelerates neointimal
formation after wire injury in femoral arteries. Finally, we demonstrate
that pharmacological intervention with anti-TWEAK antibody reduced
neointimal hyperplasia after wire injury in mice. These findings indicate
that the TWEAK/Fn14 system may represent an attractive potential
therapeutic target for treating vascular remodeling, including restenosis
after angioplasty.

2. Materials and methods
2.1. Cell culture

Aortic VSMCs were isolated from aorta of wild-type (WT) and
Tnfrsf12a deficient mice [15]. Briefly, adhering fat and connective tissue
were removed by blunt dissection from the thoracic aorta. Aortas were
minced into small ring and preincubated in DMEM (Whitaker) contain-
ing 1 mg/mL collagenase (type II, 290 U/mg), penicillin (100 U/mL),
streptomycin (100 Ig/mL), and glutamine (2 mmol/L) (Sigma) for 15
to 20 min at 37 °C in 95% air/5% CO, and then explants were seeded in
DMEM with 10% FBS. Cells were harvested for passaging at 2- to 3-day
intervals and used between the second and seventh passages. VSMCs
were stained with specific markers of VSMC a-SMA (A2547; Sigma)
and calponin (ab46794; Abcam), endothelial cells (CD31, ab28364;
Abcam) and fibroblast (S100A4, ab93283; Abcam) to ensure the purity

of VSMC isolation methods (Fig. S1). For experimental analysis, cells
were made quiescent by 24-h incubation in medium with 0-0.5% FBS.

2.2. RNA-Seq library construction and sequencing

RNA-Seq libraries were prepared using the Illumina TruSeq Stranded
Total RNA library prep, after ribodepletion with the Epicenter Ribozero
Gold kit (cat# RZE1224) starting from 500 ng of DNAse I treated total
RNA, following the manufacturer's protocol, with the exception that
14 cycles of PCR were performed to amplify the libraries, to keep the du-
plication rate lower than with the recommended 15 cycles. The ampli-
fied libraries were purified using AMPure beads, quantified by Qubit
and QPCR, and visualized in an Agilent Bioanalyzer. The libraries were
pooled equimolarly, and loaded on an Illumina HiSeq 2500 flow cell,
v4 chemistry as paired end 50. The R statistical software environment
was used to run the Bioconductor package, DESeq2 to analyze the
RNA-Seq data set for differential expression between groups (Applied
Bioinformatics Laboratory, NYU School of Medicine, New York, USA).

2.3. Gene set enrichment

A method for gene set enrichment analysis based on logistic regres-
sion [16] implemented in the Babelomics suite [17] was used to extract
the GO terms (biological processes, molecular functions and cellular
components) and KEGG pathways (annotation extracted using KEGG
rest service) over-represented in each of the conditions. A threshold of
adjusted p-value by FDR < 0.05 was used to select the significant GO
terms and KEGG pathways.

24. Functional module extraction and functional enrichment

The NetworkMiner [18] web-tool implemented in the Babelomics
suite [17] was used to extract the relevant protein-protein interaction
networks associated to each of the two conditions compared. The
input for NetworkMiner was the list of genes identified in the RNASeq
experiment ranked by the stat parameter of the DeSeq2 analysis. We
used the “All ppis” interactome (genes version) and allowed one exter-
nal intermediate protein.

The FatiGO algorithm [19] was applied to perform the functional en-
richment analysis of the proteins in each of the networks (excluding or-
phan nodes). We run FatiGO using GO terms (biological processes) as
annotation and the interactome used for the NetworkMiner analysis
as the reference list of genes. A value of p-value adjusted by FDR <0.05
was considered for statistical significance.

2.5. Flow cytometry

Cells were harvested by trypsinization, fixed overnight in 70% etha-
nol, washed and incubated for 1 h in PBS containing 100 pg/mL RNAse A,
10 pg/mL propidium iodide (PI) and 0.05 Nonidet P-40%. The total cell
number and the percentage of cells in GO-G1, S or G2-M phases was
counted using standard flow cytometry methods and a BD FACSCanto
II flow cytometer (BD Biosciences).

2.6. Wound closure assay

Wild type or Tnfrsf12a='~ VSMCs were grown to confluence in
growth medium and then serum deprived for 24 h. A single scrape
wound was made, and cells were then incubated with or without
rTWEAK (100 ng/mL). 10% FBS was used as a positive control. Migration
into the denuded area was monitored by photomicroscopy. To inhibit
VSMCs proliferation, cells were preincubated 30 min with an anti-
proliferative dose of Actinomycin D (0.01 ug/mL; Sigma) [20] before
rTWEAK stimulation.
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Fig. 1. RNA-Seq analysis of differentially expressed genes between TWEAK-treated and untreated VSMCs. A) Principal-component analysis (PCA) of VSMCs incubated 24 h in the presence
or absence of ITWEAK (N = 3) based on RNA-sequencing gene expression levels. Color coded according the group of mice. B) Heat map representing differentially expressed genes
between TWEAK-treated and untreated VSMCs (only genes with adjusted p-value by FDR < 0.05). C = control; TW = rTWEAK. C) Network linked to upregulated genes by rTWEAK in
VSMCs. D) Top ten Gene Ontology (biological processes) terms significantly over-represented (adjusted p-value by FDR < 0.05) in the set of proteins from the network associated to
TWEAK upregulated genes.
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Fig. 2. TWEAK increases VSMCs proliferation. A) Heat map shows cyclins (Ccn), cyclin-dependent kinases (Cdk) and cyclin-dependent kinase inhibitors (Cdkn) regulated by TWEAK in
VSMCs (adjusted p < .05). B) Validation by RT-qPCR of select genes identified by RNASeq. RT-qPCR data represented as fold vs unstimulated cells of three biological replicates run in
experimental duplicate and normalized to GADPH expression. Scatter plot showing the significant positive relationship between selected mRNA gene expression obtained by RNA-Seq
and real-time PCR. Pearson correlation. r = 0.80; p = .006. C) Cell cycle analysis of VSMCs by propidium iodide staining and flow cytometry after 18 h of treatment. Control (0% FBS),
rTWEAK (100 ng/mL rTWEAK) and 10% FBS (positive control). D) The percentage of VSMCs in GO/G1, S or G2/M phase of the cell cycle after 18 h of incubation with 0%FBS (Control),
rTWEAK (50-100 ng/mL) or 10%FBS. Data represent mean 4 SEM of 4 independent experiments (Student's t-test). **p < .01 vs Control and ***p <.001 vs Control). E) Proliferative
curve of wild type or Tnfrsf12a~~ VSMCs cultured in the presence of 0%FBS (Control), TTWEAK (100 ng/mL) or 10%FBS from 0 to 72 h after serum starvation. Data represent mean -+
SEM of 3 independent experiments (Student's t-test) *p < .05 vs Control and **p < .01 vs Control).
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Fig. 3. TWEAK increases migration of cultured VSMCs. A) Representative photograph of VSMC migration in the wound-healing assay. A single scrape wound was made on confluently
plated wild type or Tnfrsf12a™~ VSMCs. Cells were then incubated for 18 to 30 h in the presence of 0.5% FBS (control), rTWEAK (50-100 ng/mL + 0.5% FBS) or 10% FBS. Wound
closure images were captured and analyzed using an inverted microscope. Scale bars 200 um. B) VSMCs migration was quantified by percentage of wound closure along time. Data
represent mean =+ SEM of 4 independent experiments (Student's t-test) **p < .01 vs Control and ***p <.001 vs Control. C) WT or Tnfrsf12a '~ cells were seeded in the upper surface of
chemotaxis chambers and stimulated with 0.5% FBS (control), TTWEAK (100 ng/mL + 0.5% FBS) or 10% FBS. Quantification of migrated cells in ten fields per condition. Data represent
the mean + SEM of 4 independent experiments (Student's t-test) *p <.05 vs Control and ***p <.001 vs Control. Scale bars 20 pm.

2.7. Migration assay

Migration of Wild type or Tnfisf12a~'~ VSMCs was measured in 8 um
pore transwell 24-well cell culture inserts (Costar). Cells containing
0.2% BSA in DMEM were seeded (70 x 10 per well) into the migration
chamber. The lower wells of the chemotaxis chambers were filled with
rTWEAK (50 or 100 ng/mL) plus 0.5% of FBS. 10% FBS was used as posi-
tive control of migration. After 4 h of nonmigrating cells were removed
from the upper part of the chamber and, the nuclei of migrated cells was
fixated and stained with DAPI. The number of migrated cells was
counted in 10-randomly selected fields by Nikon Eclipse E400 fluores-
cence microscope.

2.8. RNA extraction and real-time PCR

Femoral tissues were snap frozen in N2 liquid and homogenates
were resuspended for mRNA analysis. Total RNA from VSMC or femoral
arteries was obtained by TRIzol method (Life Technologies) and quanti-
fied by absorbance at 260 nm in duplicate. 2pg of total RNA was reverse
transcribed according to the manufacturer's protocol (Applied
Biosystems). Real-time PCR was performed on a TagMan ABI 7700 Se-
quence Detection System using specific TagMan probe for 18S (VIC-
TAMRA 431089E), Tnfrsf12a (Mm_00489103_m1) and Tnfsf12 (Mm
02583406_s1) or SYBR Green (Takara Biotechnology) depend of the
studied gene. PCR primers for SYBR Green are available in the data
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supplemental (Supp. Table 1). 18S rRNA served as housekeeping gene
for TagMan studies and Gapdh for SYBR. Housekeeping genes were am-
plified in parallel with the genes of interest. All measurements were
performed in triplicate. The amount of target mRNA in samples was es-
timated by the 2ACT relative quantification method. Values of each
sample were obtained as multiples of their baseline values.

2.9. Western-blot

Cultured murine VSMCs from WT or Tnfrsf12a '~ mice in the differ-
ent experimental conditions were collected in ice-cold buffer containing
50 mM Tris-HCI pH 7.4, 150 mM NaCl, 2 mM EDTA, 2 mM EGTA, 0.2%
Triton X-100, 0.3% NP-40, 0.2 mM PMSF, 0.2 mM Na3V04 and 10
uL/mL of phosphatase inhibitor cocktail (P0044 Sigma) and pelleted.
After normalizing for equal protein concentration, cell lysates were re-
suspended in SDS sample buffer before separation by SDS-PAGE. Fol-
lowing transfer of the proteins onto nitrocellulose membranes and
probed using the following antibodies: anti-Fn14 antibody (1:1000;
EPR3179, Abcam), anti-p15™%4B (1:500; AV03047, Sigma), anti-Cdk4
(1:1000; ab137675, Abcam), anti-Cdk6 (1:1000; sc53638, Santa Cruz
Biotechnology), anti-Cyclin D1 (1:1000; s18396, Santa Cruz Biotechnol-
ogy) and anti-alpha-tubulin (1:10000; T5168, Sigma). After incubation
with appropriate HRP-conjugated secondary antibody (Jackson Labora-
tory), proteins were visualized by ECL Western Blotting Detection Re-
agents (Amersham Biosciences) according to manufacturer
instructions. Densitometry analysis of the gels was carried out using
Image] software from the NIH (http://rsbweb.nih.gov/ij/).

2.10. Human samples

Stented [21] and non-stented coronary arteries [22] were isolated
from hearts of cardiac transplant recipients. Coronary arteries were clas-
sified according to their localization, atheromatous status, nature of the
donor, and then stored in a biobank (INSERM U1148, Bichat hospital,
Paris, France) [23]. The Institutional Review Board, IRB 0006477 of
Hopitaux Universitaires Paris-Nord Val de Seine, Paris7 University, and
Assistance Publique-Hopitaux de Paris approved the use of explanted
hearts for research. Human healthy coronary arteries were collected
from freshly excised hearts removed during transplant operations at
the Hospital de la Santa Creu [ Sant Pau (Barcelona, Spain). The local
ethics committee approved the use of healthy coronary arteries.

2.11. Wire injury model

Animal procedures were strictly in accordance with the Directive
2010/63/EU of the European Parliament and were approved by the In-
stitutional Animal Care and Use Committee of [IS-Fundacién Jiménez
Diaz. Tnfrsf12a-knockout mice, Tnfsf12 knockout mice, and wild-type
(WT) counterparts (generously provided by Biogen, Inc.) have been re-
ported previously and backcrossed onto the C57BL/6 strain [24,25].

Male mice aged 10 weeks were anesthetized by ketamine/xylazine
and endoluminal injury to the common femoral artery was performed
by three passages of a 0.25-mm diameter angioplasty guidewire
(ev3™, Medtronic) as previously described [26]. To study the effect of
anti-TWEAK treatment, 10 weeks-old wild type mice were divided in
two groups: Mice injected i.p. with anti-TWEAK mAD (10 mg/kg twice
a week) or an irrelevant isotype matched control IgG specific for Hen
egg lysozyme (10 mg/kg twice a week). Biogen, Inc. generously

provided both anti-TWEAK mAb (clone P2D10; mIgG2a generated by
immunizing TWEAK-deficient mice on C57BL/6 background with re-
combinant human TWEAK) and irrelevant isotype matched control
IgG specific for Hen egg lysozyme.

2.12. Morphometric analysis

The femoral artery was excised from the inguinal ligament to the
branching of the profundal femoris artery and stored in paraformalde-
hyde for 24 h and later in ethanol until paraffin embedded. Femoral ar-
teries were cut into 5-pm serial sections, and 6 cross sections taken at
regular intervals throughout the artery were stained with hematoxylin
and eosin. For the morphometric analyses, Leica DMD 108 microscopy
was used to measure the external elastic lamina, internal elastic lamina,
and lumen circumference to calculate the medial- and neointimal area
and the neointima/media ratio 14 days after dilation.

2.13. Immunohistochemistry

Immunohistochemical analysis was carried out as previously de-
scribed [13]. For mice tissues, primary antibodies were the anti-smooth
muscle cell markers alpha smooth muscle actin (clone 1A4, F3777,
Sigma) and calponin (1:100; ab46794 Abcam), anti-TWEAK (1:50;
NBP1-6774 Novus), anti-Fn14 (1:50; 4403S Cell Signalling), anti-cyclin
D1 (1:50; 92G2 Cell Signalling), anti-CDK4 (1:100; ab137675 Abcam),
anti-CDK6 (1:100; GTX103992 GeneTex), anti-p15™E (1:100;
AV03047 Sigma), the proliferation marker anti-PCNA (1:200; sc-7907,
Santa Cruz Biotechnology), T-lymphocyte marker anti-CD3 (1:500;
A0452 Dako), macrophage marker anti-CD68 (1:200; ab53444 Abcam),
endothelial cell marker anti-CD31 (1:50; ab28364 Abcam) and fibroblast
marker anti-S100A4 (1:50; ab93283 Abcam). Donkey anti-goat biotin,
donkey anti-rabbit biotin and, goat anti-rat biotin (Amersham) was
used as secondary antibodies, ABComplex/HRP was then added and sec-
tions. Immunohistochemistry color was developed with DAB (Dako), and
section were counterstained with hematoxylin, and mounted in DPX
(Millipore). Incubation without primary antibodies and/or irrelevant
species and isotype-matched immunoglobulins was performed as a neg-
ative control for all immunostaining studies. Computer-assisted morpho-
metric analysis was performed with the Image-Pro Plus software
(version 4.5.0 for Windows) in a blinder manner. The threshold setting
for area measurement was equal for all images. Results were expressed
as % positive area of, Cyclin D1, CDK4, CDK6 and, p15™*“® in total artery,
and as % of PCNA positive cells versus total cells.

For human tissues, primary antibodies were anti-o-SMA (1:500;
ab5694 Abcam), anti-calponin (1:100; ab46794 Abcam), anti-TWEAK
(1:100; ab37170 Abcam), anti-Fn14 (1:50; ab109365 Abcam) and
anti-PCNA (1:200; sc-7907, Santa Cruz Biotechnology).

2.14. Statistical analysis

Animal sample size for each study was chosen based on literature
documentation of similar well-characterized experiments. The number
of animals in each study is listed in the figure legends. Values are
expressed as mean 4= SEM (n is noted in the figure legends). In vitro ex-
periments were replicated at least 3 times unless otherwise noted. Sta-
tistical differences were measured using two-sided Student's test or a
one-way ANOVA followed by a post hoc Bonferroni pairwise compari-
son test. A nonparametric test (Mann-Whitney) was used when data

Fig. 4. TWEAK regulates cyclin D1, CDK4, CDK6 and p15™%4® expression in VSMCs. A) Quantitative real-time PCR analysis of CcnD1, Cdk4, Cdk6 and Cdkn2B mRNA expression in VSMCs
upon rTWEAK (100 ng/mL) stimulation. Data represent the mean + SEM of 4 independent experiments (Student's t-test) *p <.05 vs 0 h, **p <.01 vs 0 h and ***p <.001 vs 0 h).
B) Western-blot analysis of cyclin D1, CDK4, CDK6 and p15™%“ in WT VSMCs. Data represent the mean + SEM of 4 independent experiments (Student's t-test) *p <.05 vs 0 h, **p <
.01 vs 0 h). C) Western-blot analysis of CcnD1, CDK4, CDK6, p15™%4® and Fn14 in WT or Tnfisf12a '~ VSMCs transfected with negative control siRNA (siCtrl) or Fn14 siRNA after 18 h
of rTWEAK (100 ng/mL) stimulation. Data represent the mean + SEM of 4 independent experiments (Student's t-test) *p < .05 vs siControl, ***p < .001 vs siControl. 'p <.05 vs
siControl + rTW). D) Western-blot analysis of ERK, Akt and p65 phosphorylation in WT VSMCs upon rTWEAK (100 ng/mL) stimulation. Data represent the mean + SEM of 3 independent

experiments (Student's t-test) *p < .05 vs 0 h. E) Western-blot analysis showing the effect of parthenolide (P), wormanin (W) and UO126 (U) on cyclin D1 and p1

5INK4B ex pression. Data

represent the mean + SEM of 3 independent experiments (Student's t-test) *p < .05 vs control; Tp < .05 vs 'TW.
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Fig. 5. TWEAK participates in neointimal formation after wire injury. A) Relative Tnfrsf12a '~ or Tnfsf12~~ expression levels normalized to 18S rRNA of non-injured (N = 4) or injured (N
= 5) femoral artery from wild type mice. Data represent the mean 4 SEM (Student’s t test) “p <.05 vs non-injured artery. B) Representative images of non-injured and injured femoral
artery cross-sections immunostained with anti-Fn14 or anti-TWEAK antibodies. Negative controls were incubated with non-specific IgG. Scale bars 50 pm. C) Representative images of
injured femoral artery cross sections stained with hematoxylin and eosin from wild type, Tnfrsf12a~~ or Tnfsf12~~ mice. Scale bars 50 um. M = media; I = intima. D) Cell number
quantification per mm?, intima and media area, and intima/media ratio of cross-sections of injured femoral arteries from wild type (N = 11), Tnfrsf12a~~ (N = 11) or Tnfsf12~/~ (N
= 10) mice. Data represent the mean 4 SEM (One-way ANOVA with Bonferroni's post-test) *p <.05 vs WT, **p <.01 vs WT and ***p <.001 vs WT.

did not pass the normality test. A value of p <.05 was considered statis-
tically significant. Data analysis was performed using GraphPad Prism
Software Version 7 (GraphPad, San Diego, CA, USA).

2.15. Data statement
Datasets have been deposited in NCBI Gene Expression Omnibus and

are accessible through GEO series number GSE114116 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114166).

3. Results

3.1. TWEAK modulates the expression of genes associated with cell prolifer-
ation in VSMCs

We initially aimed to identify genes that are modulated by TWEAK in
VSMCs. To this end, murine aortic VSMCs were incubated in the pres-
ence or absence of murine recombinant TWEAK (rTWEAK;
100 ng/mL) for 24 h. The dose of rTTWEAK was selected based in our
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previous studies [10,13]. The RNA Sequencing (RNA-Seq) transcriptome
profiling analysis revealed 2702 genes differentially expressed in
VSMCs under rTWEAK stimulation, 1611 up-and 1091 down-
regulated (Fig. 1). The number of significant up and down-regulated
genes exceeds the range where a classical functional enrichment
method can characterize gene signatures. Instead, we performed a
gene set enrichment analysis that reported 984/1032 biological pro-
cesses, 10/10 molecular functions, 6/6 cellular components and 62/92
KEGG pathways over-represented in rTWEAK stimulated versus control
conditions (Suppl. File 1). We performed a gene set-like network en-
richment analysis using NetworMiner algorithm in order to capture
the most relevant functional modules, that are up/down regulated by
rTWEAK in VSMCs [18] . This method extracts functional modules asso-
ciated to a phenotype by evaluating both, the topological robustness of a
protein-protein interaction network and the link of its components to a
condition. The modules are presented as protein networks and the level
of significance is obtained from a comparison to networks generated
from random lists of genes. Remarkably, the resultant network may
contain proteins not necessarily labeled as associated to the phenotype
by the expression analysis but important in the internal structure of the
functional module.

We obtained two significant protein networks linked to genes up
and down-regulated by TWEAK. The network associated to the up-
regulation by rTWEAK in VSMCs (Fig. 1C) contains 159 connected pro-
teins (116 significantly up-regulated in the expression analysis) that
are enriched in Gene Ontology terms related to cell proliferation
(Fig. 1D and Suppl. Table 2). We also found a smaller but significant net-
work of down-regulated genes associated with several biological over-
represented processes related to DNA binding and histone regulation,
development processes and cell cycle (Fig. S2 and Suppl. Table 3).

G to S cell cycle progression is modulated by the balance between
positive cell cycle regulators [cyclins and cyclin-dependent kinases
(CDK)] on one hand and CDK inhibitors (CDKI) on the other [27].
Fig. 2A shows a heatmap of differentially expressed cyclins, CDK and
CDKI in VSMCs incubated in the presence or absence of ITWEAK. To con-
firm the results from the RNA-Seq, a subset of different genes associated
with cell proliferation (Ccn B1, B2, D1, E1, E2, and F, Cdk1, Cdk4 and Cdk6,
and Cdkn2b) were independently validated using RT-qPCR (Suppl.
Table 4). We observed an excellent correlation between RNA-Seq and
RT-PCR findings (r = 0.80; p = .006; Pearson correlation; Fig. 2B). Inter-
estingly, Cdkn2b, a highly conserved cell-cycle regulator and tumor sup-
pressor gene, was consistently downregulated by TWEAK in VSMCs
(Fig. 2A-B). Collectively, these data suggest that TWEAK signaling con-
tributes to VSMCs proliferation. Therefore, we decided to analyze the
role of TWEAK on cell proliferation both in vitro and in vivo.

3.2. TWEAK increases VSMCs proliferation and migration

We analyzed Fn14 expression in VSMCs and we observed that -
SMA positive VSMCs express Fn14 (Supp. Fig. S1B-C). To determine
whether TWEAK regulates VSMCs proliferation, we performed cell
cycle analysis of ITWEAK-stimulated VSMCs by measuring the DNA
content of cells stained with propidium iodide. Cells growing in 10%
FBS were used as a positive control of cell proliferation. There was a de-
crease of cells in GO/G1 phase and an increase of cells in the S and G2/M
phase in ITWEAK-stimulated VSMCs at 18 h compared with control

cells (Fig. 2C-D). However, TTWEAK was unable to induce the transition
of cells from GO/G1 to S phase in VSMCs from Tnfrsf12a deficient mice
(Tnfrsf12a™~) (Fig. 2C-D), indicating that TWEAK activates cell prolif-
eration through its functional receptor Fn14. Consistently, cell number
increased over the time when VSMCs were incubated in the presence
of ITWEAK (Fig. 2E). No effect was observed in VSMCs lacking the
Fn14 receptor (Fig. 2E).

We next performed scratch wound healing assays in VSMCs from
wild type (WT) and Tnfrsf12a™~ mice to analyze whether TWEAK
plays a role in cell migration. ITWEAK-stimulated VSMCs from WT
mice efficiently reoccupied the scratched area, whereas Tnfrsf12a '~
VSMCs did not migrate in response to rTWEAK (Fig. 3A-B). To confirm
that TWEAK induces VSMCs migration, cells were preincubated
30 min in the presence or absence of anti-proliferative and non-
apoptotic concentration of actinomycin D (ActD) [20]. rTWEAK-
stimulated VSMCs also reoccupied the scratched area in presence of
ActD indicating that TWEAK induces VSMCs migration (Fig. S3). More-
over, WT VSMCs efficiently migrated in transwell assays whereas simi-
larly treated Tnfrsf12a~'~ VSMCs did not (Fig. 3C). Altogether, our
results demonstrate that TWEAK-induced VSMCs proliferation and mi-
gration is dependent on its binding to Fn14.

We subsequently screened the expression of TWEAK-regulated
genes identified by RNA-seq to gain more mechanistic insight into the
proliferative effects of TWEAK. As commented above, Cdkn2b
(p15™ 4B} 3 highly conserved cell-cycle regulator and tumor suppres-
sor gene, was consistently downregulated by TWEAK in the RNA-Seq
and qRT-PCR studies. Time-kinetic studies assessed in WT VSMCs
showed that rTWEAK downregulated Cdkn2B mRNA expression and
p15™K4B protein level in a time-dependent manner (Fig. 4A-B). In addi-
tion, the downregulation of p15™%4E was dependent of the presence of
Fn14, since TWEAK failed to downregulate p15™%48 protein level in
siRNA Fn14-transfected VSMCs or Tnfrsf12a '~ VSMCs (Fig. 4C).

The transition of G; to S phase is regulated by D-type cyclins and it has
been demonstrated that p15™%*B is an inhibitor of CDK4/CDK6 and cyclin
D1 expression in VSMCs [28]. Therefore, we have analyzed CcnD1 (cyclin
D1), Cdk4 and Cdk6 mRNA expression in rTWEAK-stimulated VSMCs. In
line with Mathew et al. [28], -ITWEAK increased CcnD1, Cdk4 and Cdk6
mRNA expression (Fig. 4A). In addition, rTWEAK increased cyclin D1,
CDK4 and CDKG6 proteins levels in a time-dependent manner (Fig. 4B).
The upregulation of cyclin D1, CDK4 and CDK6 was also dependent of
Fn14 since TWEAK failed to upregulate these proteins in Tnfisf12a =/~
VSMCs or wild type cells transfected with siRNA against Fn14 (Fig. 4C).

3.3. p15™*4B and cyclin D1 expression is regulated by ERK1/2 and Akt in
VSMCs

To analyze the mechanism/s by which TWEAK regulates p15™NK4B
and cyclin D1 expression in VSMCs, we studied signal pathways that
control cell proliferation. TWEAK induced phosphorylation of ERK1/2,
Akt and p65, a subunit of nuclear factor kappa B (NF-kB), in a time-
dependent manner, peaking at 15 min and 18 h (Fig. 4D). To analyze
the role of ERK1/2, Akt and NF-kB on p15™%*® and cyclin D1 expression,
we used the specific inhibitor U0126 (ERK1/2), wortmannin (PI3K) and
partthenolide (NF-kB). The inhibitors of ERK1/2 (UO126) and Akt
(wortmannin) prevented p15™%*E downregulation and cyclin D1

Fig. 6. TWEAK increases proliferation in vivo. A) Representative staining and quantification of positive PCNA cells in injured femoral artery cross-sections from Wild type (N = 9),
Tnfrsf12a~~ (N = 11) or Tnfsf12~/~ (N = 10) mice. Data represent the mean & SEM (One-way ANOVA with Bonferroni's post-test) ***p <.001 vs WT. Scale bars 50 um. B) Relative
CenD1, Cdk4, Cdk6 and Cdkn2B mRNA expression levels normalized to GAPDH mRNA expression of WT, Tnfrsf12a~~ or Tnfsf12~/~ femoral arteries after wire injury. Data represent the
mean 4 SEM (N = 8 per group) (One-way ANOVA with Bonferroni's post-test) *p <.05 vs WT, **p <.01 vs WT and ***p <.001 vs WT. C) Representative images of anti-Cyclin D1,
CDK6, CDK4 and p15™“B staining of cross-sections of injured femoral arteries from WT, Tnfrsf12a '~ or Tnfsf12~/~ mice. Quantification of intimal and medial percentage of Cyclin D1,
CDK6, CDK4 and p15™¥E staining respectively, in injured femoral artery cross-sections of WT (N = 11), Tnfrsf12a '~ (N = 11) or Tnfsf12~/~ (N = 8) Scale bars 50 um. Data
represent the mean + SEM (One-way ANOVA with Bonferroni's post-test) *p <.05 vs WT, **p <.01 vs WT and ***p <.001 vs WT.
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upregulation induced by TWEAK (Fig. 4E). No effect was observed with
NF-kB inhibitor parthenolide (Fig. 4E).

3.4. Loss of Tnfrsf12a or Tnfsf12 decreases neointimal formation in femoral
artery after wire injury

VSMCs migration from media to intima and their subsequent prolif-
eration is a pathological manifestation of restenosis after angioplasty
[29]. To corroborate the in vitro findings, we next tested the functional
role of the TWEAK/Fn14 axis in VSMCs-rich lesion formation in vivo
performing a guidewire injury in femoral arteries of mice. This experi-
mental model that mimics the damage caused by angioplasty in
humans [30]. The gene and protein expression levels of TWEAK and
Fn14 were increased in femoral artery after 14 days of wire injury in
WT mice compared with non-injured arteries (Fig. 5A-B). Immunohis-
tochemistry analysis also showed a predominant localization of both
TWEAK and Fn14 protein in the medial and neointimal layers
(Fig. 5B). The majority of cells present in the neointima were positive
for markers of VSMCs such as a-SMA and calponin, and also for
TWEAK and Fn14 (Fig. S4). These data should indicate that the in vivo
phenotype observed in our animal model is mainly dependent of
VSMC activity. We next performed a guide-wire injury in femoral arter-
ies of Tnfrsf12a and Tnfsf12 deficient mice to analyze the role of TWEAK
and Fn14 in vascular remodeling. Wire injury-mediated neointimal for-
mation determined by intima area and intima to media ratio was signif-
icantly smaller in Tnfrsf12a '~ and Tnfsf12~~ compared with WT mice
(Fig. 5C-D). In addition, the number of cells per mm? was also decreased
in the femoral sections of Tnfrsf12a™~ or Tnfsf12~~ compared with WT
mice (Fig. 5D).

Proliferating cell nuclear antigen (PCNA) positive cells in wire-injured
femoral arteries were significantly reduced in either Tnfrsf12a ™~ or
Tnfsf12~/~ femoral cross-sections compared with WT mice (Fig. 6A).
We next tested how the TWEAK or Fn14 absence impacts on the ex-
pression of cell cycle regulators. We found that lack of Tnfrsf12a or
Tnfsf12 increased Cdkn2B and decreased Cdk4, Cdk6 and CcnD1 mRNA
expression in injured femoral arteries with respect to WT mice
(Fig. 6B). Consistently, cyclin D1, CDK4 and CDK6 protein levels were
markedly reduced and p15™“E increased in the injured femoral arter-
ies of Tnfrsf12a or Tnfsf12 deficient mice compared with WT mice
(Fig. 6C). These results indicate that TWEAK/Fn14 axis play a key role
in neointimal formation through the regulation of the cell cycle by re-
duction of p15™“® expression and increase of CDK4/CDK6 and cyclin
D1 expression.

3.5. Treatment with anti-TWEAK antibody reduces neointimal formation
after wire injury in mice

To analyze the protective effect of TWEAK-based therapy against
injury-induced neointimal hyperplasia, WT mice were treated with
anti-TWEAK mAD or control IgG (10 mg/kg/twice a week). Mice were
treated the day before the wire injury was performed and during
14 days after this procedure (Fig. 7A). Neointimal formation determined
by intima area and intima to media ratio was significantly diminished in
anti-TWEAK-treated compared to IgG-treated mice (Fig. 7B-C). In addi-
tion, the number of cells/mm? was also reduced in femoral sections
from anti-TWEAK treated mice compared with IgG treated mice
(Fig. 7B-C). Consistent with data obtained from Tnfsf12~/~ mice, femo-
ral cross-sections from anti-TWEAK treated mice showed a 71% reduc-
tion in PCNA™ cells compared with IgG-treated mice (Fig. 7D). Finally,

we observed reduced protein expression of cyclin D1 and CDK4/CDK6
alongside with increased p15™%*B Jevels in injured femoral arteries of
mice treated with anti-TWEAK compared with those treated with IgG
(Fig. 7E). Collectively, these data provide evidence that anti-TWEAK
mAD treatment ameliorates restenosis after angioplasty.

3.6. TWEAK/Fn14 axis in human intimal thickening

Finally, in order to translate the results obtained from our in vivo
model to the human context, we have performed a-SMA, calponin,
Fn14, TWEAK and PCNA immunohistochemistry in human healthy
and stenotic coronary arteries. TWEAK was expressed in healthy coro-
nary arteries while Fn14 expression was absent. In addition, we ob-
served that both, TWEAK and Fn14 are expressed in human coronary
arteries with stenosis (Fig. 8) as well as in-stent restenosis (Fig. 8)
colocalizing with markers of VSMCs such as o-SMA and calponin.
PCNA™ cells are also present in the neointima of both types of human
injured coronary arteries, but not in healthy artery (Fig. 8).

4. Discussion

Percutaneous transluminal coronary angioplasty has been widely
used to open up blocked coronary arteries [6]. However, many patients
undergoing coronary angioplasty experience postangioplasty resteno-
sis, which is a major obstacle in the long-term outcome of angioplasty
interventions. Restenosis is defined as the healing response of the arte-
rial wall to mechanical injury and implicates neointimal hyperplasia
(VSMCs proliferation and migration) and vessel remodeling. It has
been previously demonstrated that TWEAK participates in several pa-
thologies that course with vascular remodeling. In this sense, TWEAK
increases the inflammatory response associated with atherosclerotic
plaque development in mice [13,14]. In addition, TWEAK and Fn14 par-
ticipate in matrix degradation and induce angiogenesis in experimental
abdominal aortic aneurysm [10]. Although it is known that VSMCs are
key cells implicated in vascular remodeling, there are so far no studies
focusing on the TWEAK-regulated signaling pathways in VSMCs. Here,
we provide the first evidence for a pivotal role of TWEAK/Fn14 axis in
neointimal formation after angioplasty. We used RNA-Seq to systemat-
ically investigate the global transcriptome of cultured VSMCs incubated
in the presence or absence of TWEAK. In this manner we generated a
useful resource for understanding the effect of TWEAK/Fn14 interaction
on VSMCs biology. RNA-Seq and network analyses unveiled that one of
the main actions of TWEAK in VSMCs is cell proliferation regulation. Our
in vivo findings indicate that: i) both TWEAK and Fn14 mRNA and pro-
tein expression are induced in vascular wall after injury in wild type
mice; ii) gene deletion of TWEAK and Fn14 in Tnfsf12 or Tnfrsf12a defi-
cient mice protects from cell proliferation and neointimal formation; iii)
anti-TWEAK treatment prevents cell proliferation and neointimal for-
mation in injured arteries; iv) TWEAK and Fn14 are expressed in
human coronary in-stent restenosis. Furthermore, our mechanistic
studies demonstrate that TWEAK interaction with its cognate receptor
Fn14 induces the proliferation and migration of VSMCs through the con-
comitant activation of CDK4/6 and cyclin D1 and inhibition of p15™K4B
expression. Moreover, p15™“B and cyclin D1 expression are regulated
by ERK1/2 and Akt kinases. Therefore, this work defines a hitherto un-
known role of TWEAK/Fn14 axis during the development of restenosis
after angioplasty (Fig. 9).

In vitro experiments in VSMCs confirmed that TWEAK, through its
receptor Fn14, promotes VSMCs proliferation. The proliferative action

Fig. 7. Anti-TWEAK treatment inhibits neointimal formation after wire injury. A) Experimental mouse design. Briefly, femoral arteries of 12-week-old male wild type mice were injured
and treated with anti-TWEAK or IgG (10 mg/kg two times per week) for 14 days. B) Representative images of injured femoral artery cross sections from IgG or anti-TWEAK treated mice
stained with H&E. Scale bars 50 pm. C) Quantification of number of cells per mm?, intima and media area, and intima/media ratio of cross-sections in injured conditions shown in B.IgG (N
= 10), anti-TWEAK (N = 14). Data represent the mean 4+ SEM (Mann-Whitney U test) **p < .01 vs IgG. D) Representative images of anti-Cyclin D1, CDK6, CDK4 and p15"*“® staining of
cross-sections of injured femoral arteries from IgG and anti-TWEAK treated mice. Quantification of intimal and medial percentage of Cyclin D1, CDK6, CDK4 and p15™¥“ staining
respectively, in the injured femoral artery of IgG (N = 10), anti-TWEAK (N = 11). Data represent the mean 4 SEM (Mann-Whitney U test) **p <.01 vs IgG.
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Fig. 8. TWEAK and Fn14 are highly expressed in the neointima of human coronary arteries. Representative images of immunostaining for markers of VSMCs («-SMA and calponin),
TWEAK, Fn14 or PCNA in serial section from human coronary artery with or without stenosis. Negative controls were stained with non-specific IgG. Scale bars 100 pm.
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Fig. 9. Model illustrating the potential mechanism of TWEAK/Fn 14 axis in the development of neointimal formation after endovascular injury. Cartoon depicting TWEAK/Fn14 function in
neointimal formation after wire injury. The interaction of TWEAK with its receptor Fn14 diminishes p15™“E, increases cyclin D1, CDK4 and CDK6 expression and ERK1/2 and Akt
activation in VSMCs, leading to an increase in VSMCs proliferation and migration. Therapeutic intervention with anti-TWEAK antibodies reduces neointimal formation.

of TWEAK has been previously reported in several cell types including
endothelial cells, cardiomyocytes, cardiac fibroblast, keratinocytes, he-
patic cells and several tumoral cell lines [7,31-33]. Although the mech-
anisms by which TWEAK induces cell proliferation are poorly known, it
has been previously shown that TWEAK induces cyclin D2 upregulation
and p27P! downregulation in cardiomyocytes, effect dependent of ERK
and PI3K signaling [32]. Now, we demonstrate for the first time that
TWEAK decreases the expression of p15™¢“B a cyclin-dependent kinase
inhibitor implicated in cell cycle regulation. TWEAK-mediated p15™“B
downregulation was related to the interaction with its sole receptor
Fn14. Thus, VSMCs from Tnfrsf12a~'~ mice or siRNA against Fn14
prevented the downregulation of p15™%*8 induced by TWEAK.

The p15™8 protein participates in the maintenance of the quies-
cent state in different cells. In VSMCs, p15™“B upregulation results in
G1 phase arrest and inhibition of pRb phosphorylation [34]. In addition,
overexpression of p15™® in vivo inhibits in-stent intimal hyperplasia
in rabbits [34]. However, although genetic deletion of Cdkn2B in mice
accelerates VSMCs proliferation, paradoxically it leads to smaller neoin-
timal lesions [35]. Now, we observed a downregulation of p15™<4B ex-
pression in TWEAK-treated VSMC and, an increase of p15™*“B Jevels
in Tnfrsf12a and Tnfsf12 deficient mice, an effect associated with a de-
crease in cell proliferation. Based on these results, it is conceivable to
think that the effect of p15™%B in neointimal formation is dependent
on its expression level within the arterial wall. The precise mechanism
by which TWEAK decreases p15™® should be related with the activa-
tion of different pathways. In endothelial cells, TWEAK activates ERK1/2,
JNK 1/2 and NF-kB, but not p38 MAPK [31]. In addition, TWEAK activates
PI3K/AKkt in osteoblastic cells [36] and ERK1/2 in human VSMCs [37].
Now, we observed that TWEAK induces ERK1/2, Akt and p65 phosphor-
ylation in VSMCs. Accordingly, ERK activation seems to be essential for
cell cycle progression in VSMCs [38]. Using specific inhibitors, we ob-
served that inhibition of ERK1/2 and Akt activation prevented p15™<4B
downregulation, indicating that the mechanism by which TWEAK de-
creases p15™%8 expression it may be related to ERK1/2 and Akt activa-
tion. We have also observed that TWEAK induces a rapid p65, Akt and
ERK phosphorylation, followed by a secondary and delayed phosphory-
lation of these proteins. The mechanisms ruling the bimodal activation
of p65, Akt and ERK are unknown. This could be due by to the fact
that TWEAK upregulates several molecules such as cytokines,
chemokines and other members of the TNF superfamily that could be
responsible for the secondary signal observed.

p15™%4B js 3 known inhibitor of CDK4/CDK6 and cyclin D1 expres-
sion in VSMCs [28]. Accordingly, we observed an increase in CDK4/
CDK®6 and cyclin D1 mRNA and protein expression under TWEAK stim-
ulation in VSMCs. The increase of these cyclin-dependent kinases and
cyclin D1 was accompanied by an augmentation in the number of
cells in S phase and total number of cells, and a decrease of cells in
GO/G1. Very importantly, we also provide evidence that our in vitro ob-
servations are applicable in vivo by demonstrating that Tnfrsf12a or
Tnfsf12 deletion decreased the number of proliferative cells, CDK4/6
and cyclin D1 expression, and increased p15™“8 expression, ending
in less neointimal formation in a murine model of vascular injury.

VSMCs proliferation is associated with their plasticity [39]. VSMCs
have the ability to change from a differentiated and quiescent contrac-
tile state to a proliferative and migratory synthetic phenotype in re-
sponse to surrounding stimulus. In this sense, we have previously
demonstrated that TWEAK-stimulated VSMCs differentiate from a con-
tractile to a synthetic phenotype [15]. Thus, TWEAK decreases markers
of contractile phenotype such as a-SMA and calponin, and increases
markers of synthetic phenotype such as osteopontin and metallopro-
teinase 9 in cultured VSMCs [10,15]. Change in the phenotype induced
by TWEAK is in agreement with the increase in VSMCs proliferation ob-
served in our study. However, it is important to note that many ex-
panded VSMC-derived cells in the injured-induced neointima
maintain a-SMA expression [40]. In this context, it has been previously
demonstrated that TWEAK/Fn14 axis increases o.-SMA expression dur-
ing myofibroblasts differentiation [41]. VSMCs migration is also an im-
portant component that contributes to neointimal formation [4].
Although it has been reported that TWEAK increases cell migration in
a variety of cell types such as endothelial cells [42], data regarding the
effect of TWEAK in VSMCs migration were lacking. Here we demon-
strate that TWEAK induces VSMCs motility. This effect is directly related
with the expression of Fn14 since cells lacking Tnfrsf12a gene failed to
migrate in response to TWEAK. Therefore, the induction of cell migra-
tion by TWEAK/Fn14 axis can also contribute to increase lesion forma-
tion in vivo.

The most important finding in our study is the potential
translationality of our results obtained from the use of anti-TWEAK
therapy to limit neointimal formation after wire injury. Although the in-
troduction of drug-eluting stents has improved the prevention and
treatment of restenosis [5], neointimal obstruction persists in most
cases [43]. In addition, the cytostatic agents such as rapamycin are
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relatively nonspecific and are associated with late-stent thrombosis [5].
Our finding demonstrated that blockade of TWEAK by specific antibod-
ies can recapitulate the genetic phenotype obtained in Tnfsf12 ™~ mice
preventing cell proliferation after injury by increasing p15™¢4B expres-
sion and reducing CDK4/6 and cyclin D1 expression levels in injured
vessel. However, it is important to note that VSMCs proliferation could
impact other vascular remodeling processes such as atherosclerosis. In
fact, while VSMCs proliferation is detrimental in the early stages of ath-
erosclerotic plaque developing, it is protective in advanced atheroscle-
rotic lesions, preventing fibrous cap from rupturing and promoting
plaque repair [44]. For that reason, a local administration of TWEAK/
Fn14 blockers through drug-eluting stents could be a better option to
lower the restenosis rate.

In conclusion, our findings provide novel and important insights into
the role of TWEAK/Fn14 axis in neointimal formation after wire injury.
TWEAK increases VSMCs proliferation and migration through p15™¢48
downregulation and CDK4/6 and cyclin D1 upregulation. Therapies
aimed to block TWEAK/Fn14 interaction could protect from restenosis
after angioplasty.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.07.072.
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