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Simple Summary: Multiple myeloma is a complex blood cancer that targets plasma cells. Recent ad-
vances in omics technologies, high-throughput sequencing, and artificial intelligence have enhanced
data analysis, leading to improved predictions and treatment strategies. This review highlights recent
progress in these research areas and provides direction for future studies.

Abstract: Multiple myeloma is a complex and challenging type of blood cancer that affects plasma
cells in the bone marrow. In recent years, the development of advanced research techniques, such as
omics approaches—which involve studying large sets of biological data like genes and proteins—and
high-throughput sequencing technologies, has allowed researchers to analyze vast amounts of genetic
information rapidly and gain new insights into the disease. Additionally, the advent of artificial
intelligence tools has accelerated data analysis, enabling more accurate predictions and improved
treatment strategies. This review aims to highlight recent research advances in multiple myeloma
made possible by these novel techniques and to provide guidance for researchers seeking effective
approaches in this field.

Keywords: multiple myeloma; biomarkers; diagnostics; prognosis; next-generation sequencing;
third-generation sequencing; omics; artificial intelligence; machine learning; deep learning

1. Introduction

Multiple myeloma (MM) is the second most common hematologic malignancy after
non-Hodgkin’s lymphoma, accounting for approximately 1.8% of all new cancer cases [1].
This cancer is characterized by the clonal proliferation of malignant plasma cells (PCs)
in the bone marrow (BM) and exhibits a complex genetic landscape that enables the
classification of patients into subgroups with differing prognoses, treatment responses, and
levels of drug resistance [2,3]. Common symptoms of MM include bone damage, anemia,
impaired kidney and immune function, and hypercalcemia, along with destructive bone
lesions and the production of abnormal monoclonal immunoglobulins [4,5]. With the use of
approved modern drug combinations, a complete response can be achieved in most patients.
However, relapses still occur, indicating the persistence of a small but clinically significant
subset of myeloma cells, known as minimal residual disease (MRD) [6]. Patients who
experience these relapses may develop what is known as relapsed or refractory multiple
myeloma (RRMM), in which their disease no longer responds to previous treatments and
requires new lines of therapy [7,8]. In general, MM median survival is approximately
six years [4].

The diagnosis of MM is highly complex due to the presence of various asymptomatic
precursor stages, such as monoclonal gammopathy of undetermined significance (MGUS)
and smoldering multiple myeloma (SMM). MGUS occurs in 3% of the population over
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50 years old and can progress to MM or an associated malignant disorder at a rate of 1%
per year. Additionally, some patients may develop the asymptomatic intermediate stage
known as SMM [9]. Additionally, other hematologic malignancies, including primary
amyloidosis, Waldenström macroglobulinemia, and plasma cell leukemia (PCL), share
overlapping characteristics with MM, making precise differential diagnosis crucial for
timely and effective treatment [10]. Moreover, the absence of symptoms in the earliest
stages of the disease often leads to MM diagnosis in hospital emergency settings [11].

Once the diagnosis is established, biomarker identification helps determine the genetic
heterogeneity driving disease progression and correlates with the development of the
various stages of MM [12,13]. For example, evolution from MGUS to MM is associated with
the expression of oncogenes MYC and RAS [14,15], as well as chromosome deletion and
DNA hypomethylation [16,17]. Other common genetic alterations include chromosomal
translocations, gains and losses of chromosomes that target the cyclin D (CCND) family,
immunoglobulin heavy chain (IGH) translocations—most commonly t(11;14)(q13;q32),
detected in 20% of MM patients—and alterations in the immunoglobulin lambda (IgL) gene
locus, reported in 10% of MM patients [18,19] (Table 1).

Table 1. Main genomic alteration observed in MM.

Genomic Alteration Prognostic Implication Detection Method

t(11;14)(q13;q32) Intermediate prognosis, good response to treatment. FISH, NGS, RT-PCR
IgL locus Poor prognosis, associated with reduced survival. FISH, SNP arrays

MYC/RAS overexpression Associated with progression from MGUS to MM. FISH, NGS

Del(17p13) Poor prognosis, hypodiploidy, resistance to treatment, and
lower survival rate. FISH, NGS

Gain of 1q (Amp(1q)) High-risk marker, associated with increased relapse rates. FISH, NGS
t(4;14) translocation Intermediate/poor prognosis, therapeutic resistance. FISH, NGS

Lower frequency translocations
(t(14;16)(q32;q23), t(14;20)(q32;q11)

(2%) y t(8;14)(q24.3;q32))
Poor prognosis, aggressive disease. FISH, NGS

Hyperdiploidy Better prognosis. Conventional
karyotyping, FISH

Hypodiploidy Poor prognosis, associated with chromosomal losses. FISH, SNP arrays, NGS

The primary traditional techniques to detect these biomarkers include BM biopsy,
serum analysis, 24 h urine analysis, metaphase karyotyping, fluorescence in situ hybridiza-
tion (FISH), imaging, assessment of monoclonal protein (M protein), identification of
abnormal immunoglobulins, measurement of free light chains in the serum and urine
of MM patients, as well as detection of chromosomal abnormalities and osteolytic bone
lesions [13,20]. Techniques such as fluorescence in situ hybridization (FISH) and single
nucleotide polymorphism (SNP) microarrays allow for the detection of chromosomal
aberrations but have certain limitations. For example, while FISH is highly accurate in
identifying recurrent aberrations, it is restricted to the targets of the selected probes, pre-
venting a complete cytogenetic characterization. SNP microarrays, on the other hand, are
used to summarize copy number changes in MM but often rely on FISH results to detect
IGH translocations [2]. Moreover, FISH and SNP microarrays cannot detect somatic point
mutations [12,21]. Additionally, these methodologies are labor-intensive, have limited
genomic resolution, and require large quantities of bone marrow material, which is often
inadequate due to the low mitotic activity and low percentage of plasma cells in the bone
marrow in MM patients [13].

With the availability of various cytogenetic and molecular techniques, clinical guide-
lines have been developed to distinguish between the early and advanced stages of MM.
The International Myeloma Working Group (IMWG) has presented diagnostic benchmarks
for MM and its differential phases [22]. Additionally, two systems, the Durie-Salmon PLUS
System (DSS) and the International Staging System (ISS), have been established to assess
MM progression, patient survival rates, and treatment protocols [23,24]. It is important to
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note that these guidelines depend on the sensitivity and reliability of biomarker detection,
which can be complex and prone to misdiagnosis or inaccurate staging. For instance,
M-protein is undetectable in 18% of MM cases using serum protein electrophoresis, and 3%
of patients lack reportable traces [25,26]. To address these limitations, researchers are now
focused on discovering novel biomarkers to improve diagnostic accuracy, including angio-
genesis markers, microRNAs, telomeres and telomerase activity, extracellular matrix (ECM)
proteins, circulating tumor cells and DNA, and genomic, proteomic, and immunologic
markers. Advanced methodologies for detecting these biomarkers include multiparameter
flow cytometry (MPC), next-generation sequencing (NGS), liquid or blood biopsy, and
allele-specific oligonucleotide (ASO)-qPCR [13,20].

The complexity of MM poses significant challenges in diagnosis, prognosis, and
treatment, highlighting the need for innovative methods to improve patient outcomes.
In this regard, artificial intelligence (AI) and high-throughput sequencing technologies
(NGS and TGS), along with recent advancements in omics, represent transformative tools
in modern medicine with the potential to revolutionize cancer care. Through machine
learning (ML) and deep learning (DL) algorithms, AI has shown remarkable potential
in analyzing large datasets, identifying patterns, and making predictions that enhance
clinical decision-making [27]. Likewise, NGS enables comprehensive genomic profiling,
allowing for the identification of genetic mutations and alterations at an unprecedented
level of resolution [28].

This review aims to provide a comprehensive overview of the most significant research
conducted in recent years on the application of AI and NGS in the field of MM, highlighting
the advancements and potential of these technologies in deepening our understanding of
this complex disease. It will synthesize the current state of knowledge, identify emerg-
ing trends, and discuss the implications of AI and NGS for future research and clinical
practice in MM.

2. Overall Aspects of High-Throughput Sequencing

Personalized medicine is a highly promising approach aimed at achieving greater
treatment efficacy and reducing side effects in cancer care. This strategy is closely tied to the
identification of disease-related mutations and genetic variations, which can be effectively
accomplished through high-throughput sequencing. Leading this group of technologies is
next-generation sequencing (NGS), or second-generation sequencing, which has evolved
rapidly over the past 15 years from classical methods like Sanger and Maxam–Gilbert
sequencing. Although the Sanger method remains valuable for research purposes, it has
largely been replaced by NGS due to its lower costs and much higher capacity.

NGS methods are broadly categorized by three main companies and their associated
technologies. The first technology would be Pyrosequencing (QIAGEN, Hilden, Germany)
primarily using 454 sequencers, though this technology is now largely outdated. The other
two sequencing technologies are Ion Torrent (Thermo-Fisher, Waltham, MA, USA) and
Illumina (Illumina, San Diego, CA, USA). While both are widely used today, Illumina’s
technology has become the leading NGS platform, significantly surpassing traditional
Sanger sequencing in terms of efficiency, accuracy, and speed. Illumina’s technology can
read up to 300 bps and perform paired-end sequencing, which is essential for identifying
chimeric DNA molecules [29].

Different inputs of DNA and the machines employed result in three main NGS strate-
gies: whole-genome sequencing (WGS), whole-exome sequencing (WES or coding genome),
and targeted panels sequencing (TS, sequencing of limited areas of interest). The most
complex and complete strategy would be WGS, which allows the identification of coding
and non-coding mutations, INDELs, aneuploidies, CNAs, structural rearrangements and
signatures, as well as intergenic, intronic, and untranslated regions (UTRs), promoters,
regulatory elements, and repetitive regions, all being areas capable of harboring multiple
cancer-driving mutations. WES would give information about the coding genome, which
corresponds only to 1–2% of the total genome, thus retrieving information on coding
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mutations, INDELs, aneuploidies, and CNAs. The final one, the TS, would retrieve the
same information as the WES but for limited areas. TS is performed to overcome the
limitations of WES and WGS by combining sensitivity and accuracy with time efficiency
and cost reductions [30].

The larger footprints obtained by WGS are significantly more expensive and slower
and have high costs in the downstream analyses. On the bright side, WGS does not require
prior knowledge and captures the full spectrum of structural variations and mutations
that may impact the development of the disease [31–33]. WES is primarily used to identify
critical short genomic variants in cancer [34,35] but it analyzes only the coding portion of
the genome, thus limiting its ability to detect translocations and CNAs [36]. Nevertheless,
despite covering only a small percentage of the genome, coding regions contain over 85%
of disease-related mutations in many types of cancer [37,38]. Targeted panels, on the
other hand, are the most cost-effective approach for detecting and studying MM in clinical
settings, as they identify mutations, CNAs, and all known immunoglobulin rearrangements.
The limitation of this strategy is that it requires prior knowledge of the mutations to target,
which could result in missing some significant aberrations. Still, NGS is emerging as a
powerful diagnostic and prognostic tool in the clinic due to its flexibility, reduced costs, and
compatibility with other techniques, such as CRISPR-based approaches [39] enabling the
development of custom NGS panels like MSK-IMPACT® or FoundationOne® CDx [40–48].

In summary, WGS offers greater accuracy in capturing comprehensive whole-genome
information, including CNAs, and produces less bias when identifying non-reference
alleles. However, WES and TS are often preferred due to their lower cost—which en-
ables the inclusion of larger patient cohorts—faster turnaround times, and simpler data
interpretation [49,50]. Depending on the nature of the study—whether research-based
or diagnostic—the available technology, budget, and sample volume, different methods
should be employed [51].

2.1. NGS in the Study of MM

Despite the numerous advantages NGS offers, its incorporation into clinical practice
for MM diagnosis has been slow and met with resistance. This hesitation is partly due
to the significant heterogeneity of MM and the lack of consensus on how, or even if,
NGS should be used to redefine high-risk disease [51–53]. For example, in acute myeloid
leukemia, NGS has been introduced in a quicker way due to the lower complexity of the
disease and, thus, the obtention of clearer translational results [54–57]. The primary reason
for this slow incorporation is the persistent knowledge gap between computational and
experimental fields. The computational field is often perceived as slow, complex, and
costly, with results that are challenging to interpret and reproduce. However, a targeted
NGS panel can provide a more precise and efficient assessment of various mutations and
genomic alterations compared to FISH, karyotyping, or SNP microarrays [40].

Against all reluctance, NGS has proved itself to be extremely useful in the study
and diagnosis of MM, aiding in the discovery of several novel genomic markers, such
as genetic loci rs12521798 and rs17748074 linked to bortezomib-induced peripheral neu-
ropathy in MM patients [58]; glutathione-s-transferase (GST) polymorphisms and tu-
mor necrosis factor-α (TNF-α) associated with the survival in MM [59]; polymorphism
rs4240803 of SLC7A45 linked to a better response in MM patients with melphalan based
therapy [60]; and hypodiploidy or hyperploidy associated with a poor prognosis in
MM [61,62]. Additionally, it is very interesting to highlight the results of the CoMMpass trial
(https://themmrf.org/finding-a-cure/personalized-treatment-approaches/; accessed on
11 November 2024), which has revealed a complex landscape of structural variations as
well as recurrent somatic mutations in the MM in several studies [19,63].

To achieve the most effective NGS techniques for MM and perform one single as-
say, several groups have developed TS assays specific to genomic aberrations in the
disease [15,36,40,43,48,64,65]. Specifically, Yellapantula and collaborators published the
first large-scale head-to-head comparison of standard FISH and SNP microarray with a
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custom capture NGS assay. Results of extremely high concordance led to the conclusion
that NGS can be employed as a novel strategy to replace the current standard of care
techniques, like FISH or SNP microarrays.

Not only can DNA material be analyzed by NGS—referred to as DNAseq or DNA
sequencing—but RNA material can also be studied, with traditional gene expression
profiling now replaced by RNA sequencing (RNAseq). RNAseq provides a comprehensive
view of gene expression and enables comparisons between different conditions, such as
mutated versus wild type, to assess expression differences and their potential effects on
metabolic pathways and phenotype. Combined approaches using DNAseq and RNAseq
have proven highly effective; for instance, WGS-RNAseq combinations have been used to
analyze heterogenous clonal structures in patients, determine molecular profiles during
disease progression and in response to treatment, and identify novel therapeutic targets for
MM, such as BCMA and SLAMF7 [32,66]. In addition, low-pass WGS and RNAseq were
employed in liquid biopsies of MM and other cancers to assess the circulating tumor cells
and circulating free DNA [67–71]. These latter combinatory strategies are very promising as
they require only one blood sample for the genome profiling, while the standard profiling
techniques require a BM biopsy. A recent study created a portal for alternative splicing
events for each MM subgroup, thanks to the obtained NGS results [72].

In addition to genomic and genetic landscapes, the rapidly expanding field of epige-
netics also plays a crucial role, with sequencing technologies aiding in the analysis of DNA
methylation, histone modifications, and non-coding RNA expression. In MM, DNA has
been observed to be globally hypomethylated, except at the promoters of tumor suppressor
genes, where it is instead hypermethylated [73]. Methylation levels increase from MGUS to
MM, revealing novel biomarkers associated with poor prognosis [74–79]. Regarding his-
tones, overexpression of histone deacetylases and other factors like NSD2 and EZH2 have
been associated with poor prognosis in MM [53,73]. Last, in epigenetics, we encounter that
non-coding RNAs, specifically microRNAs (miR), play a role in MM, with their signatures
being different between normal and tumoral cells, they show increased deregulation in
MM compared to MGUs [73], and they have a clear impact on tumor initiation, progression,
and metastasis [80,81]. Although their presence has been typically associated with poor
outcomes, their early detection has improved survival prediction in MM patients [82].

2.2. Insights and Advances in the Different Stages of MM

In every stage of the MM, NGS has been employed to unveil some knowledge about
MM, as can be seen in Table 2. To start with the newly diagnosed multiple myeloma (NDMM)
patients, NGS allowed the identification of several risk factors such as amp(1q) [83], del(1p)
and del(12p) [84], del(17p) related to rare states of hypodiploidy or hyperaploidy [61,85,86],
and immunoglobulin lambda translocations related to a poor prognosis [19]. Additionally, a
reported rare case of Gaucher-like cristal-storing histiocytosis (CSH), associated with kappa
chain deposits and unusual amino acid substitutions in the variable region of the kappa chain,
was associated with a poor outcome of the disease [87], although kappa alterations have also
been related to myeloma in patients with trisomies [88]. Mutations like EGR1 and IRF4 were
discovered to be related to a good prognosis, whilst ZFHX4 led to a bad one in the Myeloma XI
UK trial [36]. Studies of the whole mutational spectrum of NDMM correlated hypermutated
states with worse prognosis [17,89], as well as the extent of cytogenetic lesions that are corre-
lated with prognosis inversely proportional to their number [43,90,91]. Interestingly, APOBEC
contribution for mutational signatures amplifies a bad prognosis no matter the number of
mutations or the cytogenetic group [3,31,92]. Altogether, it is being revealed that survival in
NDMM is probably influenced by an increasing genomic complexity rather than the presence
or absence of genetic lesions. However, this hypothesis should be evaluated as novel risk
factors continue to appear in the MM diagnostic scenario [93].

Progression to MGUS has been defined by myeloma-defining genomic events obtained
thanks to several low-pass WGS analysis [94–96], which has led to the idea of redefining the
stages of myeloma from low-risk MGUS, intermediate-risk MGUS, high-risk MGUS, low-
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risk SMM, intermediate-risk SMM, high-risk SMM, and MM to monoclonal gammopathy,
early multiple myeloma, and multiple myeloma [97]. However, as the state of the art
continues with the former classification, we will continue with it in this review.

In the intermediate stage or SMM, combinatory DNA and RNA strategies have
revealed that asymptomatic stages carry a globally lower number of mutations than
NDMM [57,98]. In other studies, genomic changes were discovered to be the cause of
the spontaneous evolution of cancer cells, but in other scenarios, environmental factors or
the accumulative mutation burden were the cause [3,66,99]. WGS has been employed to
analyze rearrangements in SMM, discovering that only IGH-MYC rearrangements confer a
high risk of SMM progression [100] and complex rearrangements were discovered to be
equally present in SMM than in MM but with a lower cancer cell fraction in the first [3].
NGS was also the cause of the discovery that high-risk SMM genomes were more like
NDMM due to the timing and activity of mutational processes like the aberrant activity of
the APOBEC family of DNA deaminases [3,31,92]. Finally, chr(8p) deletions, DNA tumor
fractions, and number of alterations have been suggested to have clinical relevance in the
progression from SMM to MM [46].

In the final stage of MM, RRMM much less is known due to the high heterogeneity of
subtypes that show an increased number of mutations, abnormalities in the copy numbers,
complex rearrangements, and novel mutational signatures [17,31,44,63,101]. Targeted se-
quencing was employed to detect mutations conferring resistance to IMiDs and PIs [41,102],
but most of the mutations were subclonal, which implies that clinical impact is still in check.
Recently, a study suggested that co-occurrence of 1q21 gain/amplification and MAPK
mutations are crucial mutational events in the development of extramedullary multiple
myeloma, an aggressive form of MM [103].

Table 2. High-throughput discoveries in the different stages of MM.

MM Stage Key Findings [Reference] Related Prognosis

NDMM

Amp(1q) [83]; del(1p) and del(12p) [84]; del (17p) and
hypodiploidy/hyperploidy [61,85,86]; lambda

translocations [19]; kappa alterations [87,88]; mutation
ZFHX4 [36]; general hypermutation [17,89], APOBEC

alterations [3,31,92]

Risk factor and poor prognosis

NDMM Mutations EGR1 and IRF4 [36] Good prognosis

MGUS
Global state of higher mutation rate than NDMM and lower

mutation rate than SMM [7,94]; genomic-defining events that
lead to successive stages [94–97]

Bad prognosis when reaching high-risk
MGUS from low-risk and
intermediate-risk stages

SMM

General higher mutation rate than MGUS [57,90–93]; genomic
changes, environmental factors, and mutational

burden [3,66,99]; IGH-MYC [100]; complex rearrangements
with lower cancer cell ratio than MM [3]; chr(8p) deletions [46]

Bad prognosis

MM and RRMM

High rate of mutations, abnormalities in the copy numbers,
rearrangements, and novel signatures [17,31,44,63,101];

co-occurrence of 1q21 gain/amplification and
MAPK mutations [103]

Bad prognosis and possible development
of extramedullary MM

2.3. Third-Generation Sequencing Advances and Current State

As mentioned above, the importance and utility of NGS in the study and diagnosis of
MM have been demonstrated in multiple studies, yielding sensitive, specific results with
verified reproducibility, as evidenced by the EuroClonality-NGS Working Group [104,105].

Recent advances in sequencing have led to the emergence of third-generation sequenc-
ing (TGS), with key proponents being Oxford Nanopore (Oxford Nanopore Technologies,
ONT, Oxford, UK) and PacBio (SMRT Technologies, Pacific Biosciences of California Inc.,
Menlo Park, CA, USA). These TGS technologies, under development since 2008, enable the
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generation of substantially longer reads—sometimes even spanning entire chromosomes—
which significantly surpasses the capabilities of previous NGS technologies. Although
error rates remain higher than those in NGS, with Illumina’s technology currently offering
the most accurate sequencing method, TGS excels in numerous applications with a sig-
nificantly lower sequencing depth and is rapidly gaining prominence in the field of DNA
sequencing [106]. Amongst the advantages of TGS, and due to the long read sequences ob-
tained, is the easy sequencing of the traditional and extremely challenging large repetitive
genomic regions, large INDELs, CNVs, and SVs, which can be extremely beneficial in the
comprehensive characterization of genomes under normal or pathological conditions [107].
TGS can obtain this information with minimal bias in GC- and AT-rich regions, which is a
significant challenge for NGS due to its shorter read lengths. However, both PacBio and
ONT still exhibit higher error rates than Illumina’s technology (10–15%), often necessitating
correction of TGS data with NGS. As a result, the primary approach currently involves a
combined TGS and NGS method, driving the rapid development of computational tools
to support downstream analyses [49]. However, the TGS’s central role in the recent com-
pletion of the end-to-end mapping of the human project and many other genomes in the
Telomere-to-Telomere (T2T) project [108–111] proved their versatility and applicability,
which was after that applied in several studies regarding hematologic malignancies [112].

TGS, like NGS, is used not only for DNA but also for RNA material. The main
difference is that NGS requires RNA to be converted into cDNA to prevent degradation
and prepare it for sequencing. TGS, specifically Nanopore, enables the sequencing of
native RNA, also known as direct RNA-seq, thereby avoiding RNA degradation and
simplifying the process [113]. Also, Nanopore allows the easy identification of RNA
modifications [114,115] enabling the identification of differential RNA modifications in
MM samples with a novel computational method called xPore [116].

Another problem surpassed by TGS is the discovery of structural variants (SVs). These
variants are traditionally assessed using Illumina’s technology in WES. However, as SVs
are highly repetitive regions, the short-read sequences obtained by Illumina’s technology
cause alignment errors and low signals, amongst other challenges [117,118], which dif-
ferent research groups have tried to correct through the development of computational
tools [119–122]. TGS overcomes these challenges easily by generating long reads of 100 kb
or more in length, which allows for the direct detection of most SVs with low library
preparation techniques and smaller amounts of material [123–126]. Not only that, but the
combinatory efforts of NGS, TGS, and other techniques have revealed very satisfactory re-
sults when trying to reconstruct complex SV events and unravel their different mechanisms
and biological consequences [127].

3. Proteomics, Metabolomics, and Metagenomics Advances in the Study of MM

The industrialization of biology has led to the development of what is known as omics,
a group of biological specialties that includes genomics, transcriptomics, epigenomics,
proteomics, metabolomics, and metagenomics. Each omic aims to uncover in-depth knowl-
edge by defining and quantifying pools of biological molecules, along with their structure,
function, and dynamics. The previous chapters primarily covered advances in genomics
(DNAseq), transcriptomics (RNAseq), and epigenomics (DNAseq); however, other omics
have also produced significant findings in the field of MM. In this section, three additional
omics and their impacts on MM are discussed.

Proteomics is a recent technology that has emerged as a valuable tool in cancer biology,
aiding in prognosis and the identification of new therapeutic targets [128]. Specifically,
blood-based targeted mass spectrometry in proteomics has proven to be a sensitive and
minimally invasive alternative for measuring MM disease activity [129]. Combining several
strategies is proving their efficacy; recently, a multiomics study involving deep tandem
mass tag-based quantitative global (phosphor)proteomics, RNA-seq, and ONT sequencing
of 138 patients with plasma cell malignancies encompassing MM and MGUS has revealed
the potential of multiomics in the study of cancer, uncovering a prognostic protein sig-
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nature and revealing the already well-known highly deregulated state of cells in plasma
cell malignancies [130].

Metabolomics is a rapidly evolving omics science and a powerful tool to evaluate
metabolism at a cellular or systemic level [131]. Targeted and non-targeted metabolomic
analysis suggested that there is a significant metabolic signature change in the MM patients,
with changes in amino acid metabolism as well as with the appearance of differential
amino acid metabolite signatures associated with clinical indicators in the disease [132].
Results from a recent systematic review [133] revealed that the most impacted metabolic
pathways are the citrate cycle, arginine and proline metabolism, D-glutamine/D-glutamate
metabolism, histidine metabolism, and the urea cycle [132,134–138]. Interestingly, some
MM cancer cells have a high demand for glutamine [139–141]; thus, glutamine uptake
inhibition may prevent MM growth and may be associated with higher sensitivity to anti-
MM drugs [142,143]. Other results suggest that the high activity of the serine–glycine one-
carbon (SGOC) pathway is related to tumor resistance to chemotherapy [144], suggesting
that blocking glycine uptake may be a promising therapeutic approach [145,146]. Also,
amino acid levels like proline were related to osteolysis in MM [147–149], while others like
leucine and valine have revealed diagnostic potentials [136]. Another combinatory study
with proteomics suggested a lower concentration of PC lipids in MM [150]. Finally, and
amongst the huge number of results in this field, obesity and aging stand out as known
risk factors for MM, both being related to adipose tissue levels in the BM [151,152].

Finally, metagenomics is currently emerging as one of the most powerful techniques to
measure microbial activity and composition, revealing underlying associations between the
gut microbiome and several diseases, specifically MM [153,154]. Enrichment of nitrogen-
recycling bacteria was highly correlated with the progression of MM [155]. Interestingly,
it has been suggested that microbiota can also impact the immune response to tumor
vaccination; thus, targeting gut microbes and tumor vaccines to remodel and modulate
the microenvironment of the tumor could likely enhance anti-tumor immunity [156–158].
Dietary factors have been hypothesized to be associated with sustained MRD negativity
and long-term survival in MM [159]. A short review of the aforementioned findings is
summarized in Table 3.

Table 3. Omics approaches in MM.

Omic Approach Key Findings Clinical Applications Technology [References]

Genomics (NGS)

Identification of mutations
such as IRF4, EGR1, del(17p),
and t(4;14). Identification of

genetic loci related to
bortezomib-induced

peripheral neuropathy.

Personalized treatment
strategies, risk stratification,
and treatment optimization.

Whole-genome sequencing
(WGS), targeted

sequencing [51,58,63]

Transcriptomics (RNA-seq)
Gene expression profiling

(e.g., BCMA, SLAMF7);
alternative splicing analysis.

Target discovery,
understanding of MM

clonal evolution,
non-invasive monitoring.

RNA sequencing (RNA-seq),
single-cell RNA-seq [32,66]

Epigenomics

DNA methylation patterns,
histone modifications
associated with tumor

progression, and
miRNA signatures.

Prognostic biomarkers,
potential therapeutic

interventions targeting
epigenetic modifications.

DNA methylation arrays,
ChIP-seq [73,77,78]

Proteomics

Protein signature/biomarkers
for disease activity and

progression, protein
signatures for prognosis.

Non-invasive monitoring
using blood tests, identifying

therapeutic targets.

Mass spectrometry (MS),
protein arrays, and combined

techniques [128,130]



Biology 2024, 13, 923 9 of 27

Table 3. Cont.

Omic Approach Key Findings Clinical Applications Technology [References]

Metabolomics

Alterations in amino acid
metabolism, changes in the
citrate cycle, arginine and

proline metabolism,
D-glutamine/D-glutamate

metabolism, histidine
metabolism, and urea cycle.

Therapeutic targets (e.g.,
glutamine inhibition).

NMR spectroscopy and mass
spectrometry [133,139,144]

Metagenomics

Links between gut
microbiota and MM

progression, potential
immune modulation.

Microbiome-based
interventions; enhanced

understanding of disease
mechanisms.

Next-Generation Sequencing
(NGS), 16S rRNA

sequencing [153,155,156]

4. Overall Aspects of Artificial Intelligence

AI is a broad scientific field focused on simulating human intelligence through the de-
velopment of algorithms that enable learning from experience, reasoning, decision-making,
and problem-solving—tasks traditionally performed only by human minds [160]. AI has
expanded to encompass several subfields, such as ML and DL, and have emerged as pow-
erful methodologies for extracting valuable information from data and problem resolution
across diverse disciplines, including the healthcare system [161]. Based on their objec-
tives, ML algorithms can be broadly categorized into three groups: supervised learning,
unsupervised learning, and reinforcement learning, each offering distinct methodologies
and applications.

Supervised ML (SML) involves training algorithms on labeled datasets, enabling
them to learn the relationship between input features and the target output [160]. The
algorithm undergoes iterative learning to predict the target variable based on the features,
refining its predictions to effectively learn from the training data. In contrast, unsupervised
ML (UML) operates with unlabeled data, meaning the dataset lacks predefined labels or
categories [162]. UML uncovers hidden patterns or relationships within the data without
explicit guidance, using techniques such as clustering and dimensionality reduction. For
example, clustering analysis can be applied to patients with similar genetic signatures to
identify common underlying causes [163]. Finally, reinforcement learning (RL) is an ML
type in which an agent learns to make optimal decisions by interacting with an environment
and receiving feedback through rewards or penalties [164]. An example of RL in healthcare
is its application in personalized medicine for chronic diseases such as diabetes, where
the agent optimizes patient treatment by continuously learning from health data and
treatment responses [165]. Finally, DL (also part of the AI field) involves using advanced
mathematical techniques to create “artificial neural networks” (ANN), systems inspired
by the structure and function of neural networks in the human brain. These networks are
composed of layers of nodes, or "neurons", connected to each other, where each connection
has a weight that adjusts the influence of one neuron over another. Neural networks learn
through a training process that involves adjusting these weights to minimize prediction
error. By passing input data through multiple layers, each layer learning increasingly
complex representations of the information, neural networks can identify intricate patterns
in large volumes of data. Neural networks are particularly useful in tasks such as image
recognition, natural language processing, and predicting complex outcomes in medical and
genetic data, enabling researchers and clinicians to advance in the diagnosis and treatment
of complex diseases, such as MM [166]. Table 4 shows a brief and comprehensive summary
of the discussed AI methods.
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Table 4. Summary of general AI Approaches in Healthcare.

Method Description Examples

AI
Simulation of human intelligence through
algorithms, including learning, reasoning,

and decision-making.

Applied in healthcare for diagnosis,
predictive analytics, and

personalized treatment [160,161].

ML
Subfield of AI for data analysis and

problem-solving includes supervised,
unsupervised, and RL.

Used in medical diagnostics,
genomics, and drug discovery.

SML
Uses labeled data to train algorithms to

predict target outcomes based on known
input-output relationships.

Predictive models for disease
outcomes, such as identifying
cancer risk based on patient

data [160].

UML
Analyzes unlabeled data to discover
hidden patterns or clusters without

predefined labels.

Clustering genetic data to identify
groups of patients with similar

disease traits improves diagnosis
and treatment [162,163].

RL
An agent learns optimal decision-making

through feedback (rewards/penalties) from
interactions with the environment.

Used in personalized medicine,
such as adjusting diabetes

treatments based on patient
response data [164,165].

DL
Creation of ANN inspired by the human

brain structure. Passes data through layers
to identify complex patterns.

Tasks like image recognition,
natural language processing, and

predicting medical outcomes,
advancing diagnosis and treatment
of complex diseases like MM [166].

4.1. Innovations in Multiple Myeloma Diagnosis Through Artificial Intelligence

AI holds immense promise in the diagnosis and treatment of MM, offering advanced
techniques capable of analyzing large datasets—including genetic, imaging, and clinical
data—to identify complex patterns and genomic alterations that may be undetectable
through conventional methods. This capability is especially valuable in a complex and
heterogeneous disease like MM. In this context, multiparametric flow cytometry (MFC)
was applied to fresh bone marrow aspirates from 348 patients to differentiate between
MM and MGUS. This approach identified differential expression markers between the two
conditions, highlighting the importance of the CD27 and CD38 antigens, and produced
a predictive classification algorithm with an accuracy of ≥95% [167]. Additionally, Mo-
SaicNet and AwareNet deep learning methods were developed for analyzing BM trephine
biopsies, achieving an AUC of >0.98 for tissue and cellular classification. These tools re-
vealed that spatial heterogeneity, rather than cell density, differentiates MGUS from newly
diagnosed multiple myeloma (NDMM), highlighting the reduced proximity of BLIMP1+ tu-
mor cells to CD8+ T cells in MGUS. Post-treatment analysis showed a decrease in BLIMP1+

tumor cell density and changes in the immune microenvironment, underscoring the utility
of DL in understanding MM marrow cellular architecture [168]. Since bone marrow biopsy
and aspiration are procedures that may not always be ordered by physicians unless there is
a strong suspicion of MM, the development of biomarkers in routine laboratory tests could
be crucial for enabling rapid MM diagnosis. To this end, blood samples were collected
from multiple hospitals to develop an innovative model for diagnosing MM. This model,
based on demographic features and routine blood biomarkers, utilized the AdaBoost-
DecisionTable algorithm. Despite certain limitations, such as incomplete clinical data and a
small validation dataset, the model achieved high accuracy and a strong area under the
curve (AUC), both key metrics for assessing its potential clinical applicability [169]. Addi-
tionally, an AI-assisted diagnosis system analyzed 4187 blood and biochemical records from
Shengjing Hospital (1741 MM, 2446 non-MM) using hemoglobin, serum creatinine, serum
calcium, immunoglobulins (A, G, M), albumin, total protein, and albumin-to-globulin ratio.
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The Gradient Boosting Decision Tree (GBDT) algorithm achieved the highest precision for
accurately diagnosing MM [170].

Matrix-assisted laser desorption/ionization and time-of-flight mass spectrometry
(MALDI-TOF MS) is a powerful and highly sensitive tool for detecting large numbers
of peptides and proteins in serum, making it a robust clinical diagnostic method [171].
Deulofeu et al. utilized this technology to acquire low-mass profiles of peripheral blood
plasma from MM patients and healthy donors, which served as inputs for artificial neural
network (ANN) algorithms that effectively classify MM patients, offering a minimally
invasive approach to MM diagnosis [166]. In a subsequent study by the same group,
proteins in peripheral blood plasma were precipitated using a two-step extraction protocol
to improve MALDI-TOF MS resolution. Machine learning algorithms combined with
MALDI-TOF MS enabled accurate classification and discrimination between two mono-
clonal gammopathies, MM and PCL, achieving an accuracy of 71.5% under 10× repeated
5-fold cross-validation [172].

The detection of M-spike protein levels—immunoglobulins overproduced by the pro-
liferating malignant MM clone—is performed using serum protein electrophoresis (SPEP),
which requires skilled personnel and specialized equipment. By integrating readily avail-
able clinical and laboratory data with a random forest (RF) ML algorithm, M-spike values
were determined and found to correlate highly with those obtained through conventional
laboratory methods [173]. While the ML algorithm showed a strong correlation with M-
spike values, incorporating additional factors, such as chromosomal translocations or tumor
genomics, along with a larger patient dataset, could further improve performance. In a
related study, Sopasakis et al. compared various ML algorithms for M-protein identification
using numerical data from serum protein capillary electrophoresis and found that decision
tree algorithms could detect the presence of M protein with high accuracy [174]. Natural
language processing (NLP) was applied to SPEP reports to detect monoclonal gammopathy,
achieving high accuracy across multiple hospitals, with ML models outperforming rules-
based methods, particularly when models were applied across sites [175]. Employing ML
methods as a support tool can assist in minimizing the number of unnecessary follow-up
analyses, which are frequently conducted due to uncertainty or lack of experience by the
individual interpreting the initial electrophoresis results.

A critical aspect of MM diagnosis is the analysis of bone marrow (BM) aspirates
from patients, a manual procedure that is time-consuming and subject to considerable
inter- and intra-observer variability. A study by Chandradevan et al. presented a digital
prototype based on convolutional neural networks (CNNs), a deep learning (DL) technique,
which demonstrated higher accuracy in detecting and classifying both non-neoplastic and
neoplastic cells in MM BM aspirates [176]. However, the authors noted some limitations,
including the exclusion of disease cases in the training data, small sample size, and untested
performance on larger, denser regions, as the study focused on areas with clear, well-
preserved cell structures.

In another study, Rasal et al. proposed a neural network based on improved empirical
mode decomposition (IEMD), also a DL approach, to recognize MM cell nuclei and distin-
guish cell membranes, specifically the cytoplasm. They further introduced a novel counting
algorithm for MM cells segmented from images and validated the methodology with pub-
licly available datasets, highlighting the potential of this innovative image segmentation
method for early MM diagnosis [177]. Additionally, a technique based on generative adver-
sarial networks (GAN), called MultiPathGAN, was applied to BM microscopic images from
various databases to standardize stain styles and augment data, enhancing the model’s
adaptability to different staining techniques. Following standardization, the development
of MobileViTv2—a hybrid model combining CNNs and vision transformers (ViT)—enabled
efficient diagnosis of hematologic malignancies, including MM [178].
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Further, an AI-powered platform called Morphogo analyzed 305,019 cell images from
BM and peripheral blood (PB) smears for cell morphology screening of MM cells, a task
conventionally performed by expert technicians. Morphogo demonstrated high accuracy,
sensitivity, and specificity in detecting circulating plasma cells in PB smears, outperforming
manual microscopy [179]. Implementing AI-powered computer-assisted diagnostic systems
can significantly enhance efficiency and support pathologists in the MM diagnostic process.
This approach would help reduce time, costs, and reliance on expert evaluation.

The incorporation of genetic features for MM diagnosis may also optimize treatment
strategies. In this context, a new ANN classification model was developed to diagnose and
assess high-risk status in MM patients, using features such as age, gender, percentage of
BM plasma cells, white blood cell (WBC) count, and cytogenetic alterations analyzed by
FISH. Tested on 477 cases, the algorithm achieved 94% accuracy, with preliminary results
identifying a correlation between the percentage of BM plasma cells, WBC, and genetic risk
factors in MM diagnosis [180].

To provide comprehensive insights into the extent of BM infiltration in MM patients,
whole-body 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed
tomography (PET/CT) has emerged as an imaging technology that combines morphological
and anatomical findings with functional metabolic activity [181]. While this promising
technology may encounter variations in scan interpretation due to diverse infiltration
patterns in the BM, the integration of AI could effectively address these discrepancies and
improve diagnostic accuracy. A study carried out by Satoh et al. aimed to establish a
standard for BM FDG uptake using a deep learning-based organ segmentation method
on PET/CT images of 98 healthy adults [182]. In another study, the researchers aimed to
validate a novel deep learning-based tool that automates the assessment of BM metabolism
in MM patients using whole-body PET/CT images. The study analyzed PET/CT scans
from 35 untreated MM patients, and the automated method showed a strong positive
correlation with traditional visual PET/CT analysis and clinical data, suggesting it could
be a reliable tool for standardizing PET/CT interpretation in MM [183].

ML-based CT texture analysis effectively differentiates MM from osteolytic metastatic
bone lesions, achieving an accuracy of 78.8–92.3%, with the k-nearest neighbors model per-
forming the best [184]. Furthermore, machine learning-based CT utilizing photon-counting
detectors significantly enhances the visibility of multiple myeloma lesions compared to
energy-integrating detector CT, leading to improved detection of lytic lesions and asso-
ciated abnormalities [185]. Together, these advancements highlight the potential of ML
techniques in enhancing diagnostic accuracy and visibility in the evaluation of MM.

AI techniques enable the analysis of large and complex datasets (e.g., genetic, imaging,
clinical) to detect underlying patterns and genomic alterations not identifiable by conven-
tional methods. Applications such as flow cytometry, mass spectrometry, and PET/CT
imaging, combined with AI, have shown high diagnostic accuracy in distinguishing MM
from related conditions. Although limitations exist, such as small validation datasets, AI-
driven approaches are poised to improve diagnostic efficiency, reduce costs, and support
personalized treatment strategies in MM. Additionally, AI holds promise as a valuable
tool to assist specialized personnel, enhancing decision-making and reducing reliance on
manual evaluations.

A short summary of selected examples of the aforementioned findings is presented
in Table 5.
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Table 5. Applied AI approaches in MM diagnosis.

AI Application Area Selected Example Clinical Applications Technology
[References]

AdaBoost-DecisionTable
Model

Development of an innovative
model using demographic and

routine blood biomarkers;
achieved high accuracy.

Rapid MM diagnosis based on
readily available clinical and

laboratory data from
multiple hospitals.

AdaBoost-DecisionTable
algorithm [169]

Gradient Boosting
Decision Tree (GBDT)

High precision in diagnosing MM
based on biochemical records

(e.g., hemoglobin, serum
calcium, albumin).

Supports accurate MM
diagnosis by analyzing
biochemical markers,
reducing reliance on
invasive procedures.

GBDT algorithm [170]

MoSaicNet and AwareNet

DL methods for analyzing
BM trephine biopsies. Spatial
heterogeneity differentiates

MGUS from NDMM, highlighting
reduced proximity of BLIMP1+

tumor cells to CD8+ T cells
in MGUS.

Differentiation of
MM and MGUS.

MoSaicNet and
AwareNet [168]

Random Forest (RF) for
M-spike detection

Integrates clinical data to
determine M-spike levels,
showing correlation with

conventional methods.

Supports detection of M-spike
protein levels in MM without

the need for specialized
equipment, minimizing

follow-up analyses.

RF algorithm [173]

Convolutional Neural
Networks (CNN)

Digital prototype using CNNs for
detecting non-neoplastic and

neoplastic cells in BM aspirates;
high accuracy in cell classification.

Reduces manual work in BM
analysis, assisting

pathologists in MM diagnosis.
CNN [176]

ANN Classification Model
Uses genetic and clinical features
to assess high-risk status in MM

with 94% accuracy.

Uses genetic and clinical
features to assess high-risk

status in MM with 94%
accuracy [178].

ANN model [180]

Whole-Body
Imaging Analysis

AI tool correlates well with
traditional PET/CT analysis,

offering consistent di-agnostic
interpretation in MM.

Standardizes PET/CT for
assessing BM metabolism in

MM patients.

DL +
PET/CT [183]

4.2. Prognosis of Multiple Myeloma: Advances Through Artificial Intelligence
4.2.1. Advancements in Risk Stratification

Clinical prediction tools for MM remain limited. The International Staging System
(ISS) is a widely used prognostic tool for risk stratification in newly diagnosed MM patients
based on β2-microglobulin and albumin levels. It classifies patients into three groups with
varying overall survival rates. In 2015, the Revised ISS (R-ISS) was introduced, adding
lactate dehydrogenase (LDH) and high-risk cytogenetic abnormalities to improve accuracy.
However, both ISS and R-ISS have limitations, as they fail to fully stratify certain patients,
particularly within low- and intermediate-risk groups.

While predictive biomarkers help guide therapy selection, there is still insufficient data
to routinely tailor treatment strategies for MM based on risk level. Emerging technologies,
such as AI, can enhance patient stratification by analyzing complex clinical and laboratory
data, potentially improving the selection of initial treatments, intensifying therapy for
high-risk patients, and reducing treatment for low-risk cases. Developing AI-powered,
accessible staging models that use simple clinical and lab parameters would optimize
healthcare resources and reserve molecular testing for patients who relapse or require
targeted therapies in clinical trials. In this regard, a novel risk stratification system for MM,
known as the Modified Risk Staging (MRS) system, was introduced by Farswan et al. This
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system leverages machine learning (ML) and six basic laboratory parameters: albumin,
β2-microglobulin (β2M), calcium, eGFR, hemoglobin, and age. Trained and validated on
newly diagnosed MM patient data, the model offers a cost-effective alternative to genomic
testing. Its accuracy, confirmed through cross-validation and ROC analysis, enhances risk
group classification and survival predictions, particularly for high-risk patients [186].

Recently, an unsupervised machine learning (UML) model was developed for risk
stratification in MM, integrating clinical, biochemical, and cytogenetic data from patients
treated in clinical trials by the Spanish Myeloma Group [187]. This model demonstrates
improved prognostic accuracy, particularly for patients within the intermediate-risk R-ISS
2 group, surpassing the predictive power of traditional ISS and R-ISS scores. It identifies
two distinct patient clusters with significantly different survival outcomes, highlighting
the potential of combining existing staging systems with machine learning techniques to
enhance MM risk stratification [187]. The combination of gene expression profile (GEP) and
clinical data, using the GuanRank hazard ranking model with Gaussian process regression
(GPR), led to the identification of new gene signatures associated with MM progression.
While the integration of clinical data improved the model’s performance, the study empha-
sizes that GEP alone is insufficient for precise prognostication. The authors suggest that
incorporating higher-quality cytogenetic data could further enhance the model’s predictive
accuracy [188]. Orgueira et al. developed a machine learning model (IAC-50) integrating
clinical, biochemical, and gene expression data from the CoMMpass cohort to predict
overall survival (OS) and optimal drug combinations in MM. The model, which includes 50
variables such as patient age, ISS stage, β2-microglobulin, and 46 gene expressions, showed
promise in high-risk cytogenetic patients, providing personalized treatment predictions
and potentially outperforming traditional cytogenetic risk stratification [189]. Additionally,
an advanced Graph Convolutional Network-based Risk Stratification system (GCRS) has
been introduced for predicting cancer risk stages in newly diagnosed MM patients. By
combining multiple connectivity graphs derived from clinical and laboratory data, GCRS
effectively classifies patients into low, intermediate, and high-risk groups [190].

4.2.2. Integrating Imaging Data and AI for Improved Risk Stratification in MM

Current prognostic models for MM primarily rely on blood and BM samples, with
few models integrating imaging data due to the complexities of manual image assessment.
An AI convolutional autoencoder was used to extract features from FDG PET/CT images
in MM patients, with the goal of risk stratification [191]. By compressing the image
data, the AI algorithm successfully identified feature clusters that enabled predictions of
progression-free survival (PFS). Both supervised and unsupervised clustering methods
produced three distinct patient clusters, with cluster C indicating poorer PFS. However,
the analysis was limited by PET images being restricted to the torso, excluding critical
areas where osseous MM lesions often occur. Despite this, FDG PET/CT imaging showed
that tumor burden indicators, including metabolic tumor volume (MTV) and total lesion
glycolysis (TLG), are significant predictors of patient prognosis. This AI-based clustering
approach shows potential for enhancing prognostic accuracy in MM patients [191]. In
another model, PET-based features like MTV, CT-based features, and clinical parameters
were identified as significant predictors of PFS. Six ML algorithms, including Cox models
and gradient boosting, were evaluated, revealing that models integrating PET, CT, and
clinical data significantly outperformed those based solely on clinical parameters [192].
Schenone et al. demonstrated the potential of an AI-based approach using CT data for
the automatic stratification of transplanted MM patients into relapsed and non-relapsed
groups, as well as for identifying radiological biomarkers with prognostic value. The
study included 51 transplanted patients, 33 (64%) of whom presented with focal lesions,
using fuzzy clustering (FC) and Hough transform filtering (HTF) for patient stratification.
Despite limitations, including the use of a single radiomics tool and a relatively small
patient sample, this study highlights the potential for image-based prognostic biomarkers
in MM follow-up [193]. Utilizing a DL-based segmentation approach on CT images, the
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presence of sarcopenia was assessed in 322 patients with newly diagnosed MM, revealing
that 53% were sarcopenic. Sarcopenic patients exhibited significantly worse outcomes,
with a median overall survival of 44 months and a 2-year mortality rate of 40%, compared
to 90 months and 18% for non-sarcopenic patients, indicating the prognostic value of
sarcopenia in this population [194].

Similarly, applying AI to magnetic resonance imaging (MRI) data for multiple myeloma
(MM) prognosis could prove beneficial, eliminating the need for blood and bone marrow
samples. Using 3D convolutional neural networks (CNNs) and Gradient-weighted Class
Activation Mapping (Grad-CAM) to analyze whole-body diffusion-weighted MRI data, a
recent study introduced a novel prognostic model for MM [195]. A retrospective analysis
of 142 patients revealed significant differences in progression-free survival (PFS) between
good and poor prognostic groups, with key prognostic factors identified as MRI signals
from the spleen and vertebral bones. This AI model, validated externally, demonstrated pre-
dictive accuracy comparable to existing models like the International Staging System (ISS)
and Revised International Staging System (R-ISS), underscoring AI’s potential for prognosis
prediction in MM using only MRI data. However, challenges such as small sample size
and treatment variability require further research [195]. A separate retrospective study
aimed to develop and validate an MRI-based radiomics model for predicting high-risk
cytogenetic status (HRC) in 89 MM patients [196]. Six classifiers were tested, with the
logistic regression (LR) model demonstrating superior performance (AUC: 0.82; sensitivity:
84.1%; specificity: 68.1%) compared to others. The two-sequence MRI models, T1-weighted
(T1W) and fat-suppression T2-weighted (FS-T2W), outperformed single-sequence mod-
els in distinguishing HRC from non-HRC statuses [196]. In another study by the same
group, a radiomics approach based on spinal MRI was used to predict high-risk cytoge-
netic abnormalities (HRCAs) in MM patients [197]. Analyzing 248 lesions (111 HRCA
and 137 non-HRCA), the top nine radiomic features were selected through LR to create a
radiomics model, and a combined model incorporating clinical characteristics was also
developed. The radiomics model showed a sensitivity of 0.789, specificity of 0.787, and
accuracy of 0.788, highlighting its potential as an independent tool for predicting HRCAs in
MM patients using routine spinal MRI. Additionally, this model can identify patients likely
to have HRCAs, thereby recommending further genetic examination to improve treatment
and prognosis. Future multicenter studies with external validation and additional clinical
data could enhance the predictive performance of radiomics models.

4.2.3. Predictive Modeling for Treatment Responses

Predicting clinical drug response in cancer treatment is essential for improving patient
outcomes and reducing costs. Given the challenges of analyzing large datasets generated
by high-throughput drug screening, advanced ML algorithms are necessary for making
accurate predictions of drug sensitivity [198]. In this context, GEP databases linked to clini-
cal chemotherapy responses and suitable for ML applications could prove highly valuable
for predicting chemotherapy outcomes [199]. Povoa et al. introduced the Multi-Learning
Training (MuLT) approach, which combines supervised, unsupervised, and self-supervised
ML algorithms to predict treatment sensitivity (TS) in MM patients. By incorporating
gene expression data that reflects genetic abnormalities detected by FISH testing, MuLT en-
hances TS prediction accuracy, achieving an AUC of 68.70% in cross-validation experiments.
Applied to data from 1525 newly diagnosed MM patients from the MMRF CoMMpass
study, the method identified alternative first-line treatment options for 17.07% of patients,
demonstrating its potential for improved treatment stratification [200]. Indeed, new RNA
sequencing profiles were generated for 53 MM patients treated with two chemotherapy
regimens involving bortezomib: PAD (bortezomib, doxorubicin, dexamethasone) and VCD
(bortezomib, cyclophosphamide, dexamethasone). Using five ML methods, classifiers were
developed to differentiate between good and poor responders, with five genes (FGFR3,
MAF, IGHA2, IGHV1-69, and GRB14) found to be upregulated in good responders. The
binomial naïve Bayes (BNB) model achieved the best performance for the PAD + VCD
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cohort (AUC 0.84), while the multi-layer perceptron (MLP) model excelled in the VCD
cohort (AUC 0.89), highlighting the potential of AI models combined with RNA sequencing
profiles to identify patient-specific responses to chemotherapy [199]. A machine learning
method called simulated treatment learned signatures (STLsig) identified gene signatures
that predict which MM patients are likely to benefit from proteasome inhibitors such as
bortezomib and carfilzomib. In a study of 910 patients, STLsig successfully differentiated re-
sponders, potentially improving treatment decisions and providing insights into treatment
mechanisms [201]. The ubiquitin–proteasome pathway risk score (UPPRS), derived from
nine ubiquitin proteasome pathway-associated genes, effectively predicts overall survival
in MM patients and identifies those likely to benefit from proteasome inhibitors; ML models
integrating UPPRS and the ISS enhance survival predictions [202]. Additionally, research
conducted by Kropivsek et al., using advanced methods like multiplexed immunofluores-
cence and deep-learning-based single-cell phenotyping, identified key molecular pathways
associated with drug sensitivity, offering critical insights for personalized treatment ap-
proaches in MM [203].

4.2.4. Minimal Residual Disease (MRD) Prediction

MRD in MM refers to the small number of cancer cells remaining after treatment, un-
detectable by standard methods. Advanced techniques like next-generation flow cytometry
(NGF) and sequencing (NGS) allow for highly sensitive MRD detection. Achieving MRD
negativity is linked to better progression-free survival (PFS) and overall survival (OS),
making it a key prognostic marker in various stages of MM. Guerrero et al. developed
an ML model to predict MRD outcomes in MM integrating key genetic factors, including
t(4;14) and del(17p13), along with tumor burden markers and immune-related biomarkers.
By assigning weighted importance to these variables, the model accurately predicted MRD
status in 71–72% of patients in both training and validation cohorts. Additionally, it identi-
fied a subgroup of patients with exceptional progression-free and overall survival rates at
5 years. This ML model offers a novel approach to personalizing treatment, enabling early
MRD prediction and guiding therapy adjustments [204].

A short summary of selected examples of the aforementioned findings related to prog-
nosis, patients’ stratification, and treatment modeling using the AI approach is presented
in Table 6.

Table 6. AI approaches in MM prognosis, stratification, and treatment.

AI Application Area Key Features Clinical Applications Technology
[References]

Unsupervised ML Model
for Risk Stratification

Integrates clinical, biochemical,
and cytogenetic data; improves

accuracy in R-ISS 2
intermediate-risk group.

Identifies patient clusters with
different survival outcomes,
enhancing risk stratification.

UML integrating clinical,
biochemical, and cytogenetic

data [186]

GEP and Clinical
Data Model

Combines GEP with clinical data
to identify gene signatures for

MM progression; suggests adding
cytogenetic data.

Provides insights into MM
progression, suggesting
treatment adjustments.

GEP, GuanRank with
Gaussian process
regression [188]

IAC-50 Model

Integrates clinical, biochemical,
and gene expression data from

the CoMMpass cohort for
personalized treatment.

Predicts overall survival and
optimal drug

combinations, aiding
personalized treatments.

ML model from CoMMpass
cohort data [189]

AI Convolutional
Autoencoder for
PET/CT Imaging

Extracts feature clusters from
PET/CT for progression-free

survival prediction, limited by
torso-only scans.

Supports MM prognosis by
predicting progression-free

survival (PFS).

AI-based PET/CT
analysis [187]
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Table 6. Cont.

AI Application Area Key Features Clinical Applications Technology
[References]

3D CNN and Grad-CAM
for MRI Data.

Analyzes MRI signals from spleen
and vertebral bones for PFS

prediction; requires
further research.

Predicts PFS solely from MRI
data, offering a non-invasive

prognosis tool.

3D CNN, Grad-CAM for
MRI [195]

Simulated
Treatment Learned
Signatures (STLsig).

Identifies gene signatures
predicting benefit from

proteasome inhibitors; improves
treatment decisions.

Supports targeted treatments
by identifying

responder patients.

STLsig for proteasome
inhibitor response [201]

ML Model for
MRD Prediction.

Predicts MRD based on genetic
factors and tumor markers;
achieved 71–72% accuracy

in prediction.

Predicts MRD status and
guides therapy adjustments

for MM patients.

ML model integrating genetic
and tumor burden data [204]

5. Conclusions and Future Perspectives

MM remains a complex and challenging malignancy despite significant advancements
in its diagnosis and treatment. Key fronts include early diagnosis, disease staging, and
treatment response, which are essential for improving patient outcomes. Although modern
drug combinations have extended survival, many patients relapse, indicating the need for
continuous innovation. Traditional diagnostic techniques like FISH and karyotyping have
limitations in accuracy, emphasizing the need for more precise tools.

Emerging technologies, particularly AI and omics, including high-throughput se-
quencing (NGS and TGS), offer new opportunities to improve disease characterization and
treatment. However, integrating these technologies into clinical practice has been slow due
to the complexity of MM, computational demands, high costs, and the ever-existent gap
between experimental and computational sciences.

The use of NGS in research has led to the discovery of several novel genomic markers,
structural variations, and somatic mutations associated with MM, underscoring the utility
of this method for characterizing the disease at a deeper molecular level. The inclusion of
NGS in the study of DNA (DNAseq, specifically targeted NGS panels [48], RNA (RNAseq),
and the epigenetic landscapes of MM have identified critical metabolic pathways, thera-
peutic targets such as BCMA and SLAMF7 [32,66], roles of DNA hypo-/hypermethylation
related to MM outcomes [78,79], histone modifications, and microRNA expression linked
to MM progression [53,73]. Combined DNAseq and RNAseq approaches have also proven
valuable for assessing disease progression and treatment outcomes, with liquid biopsy
approaches emerging as a less invasive method for genomic profiling [32,71].

In recent years, technological advances have led to the development of TGS technolo-
gies, which offer longer sequencing reads, enabling the characterization of challenging
genomic regions and the direct sequencing of native RNA [107,113]. These advances have
been essential in addressing limitations associated with NGS short-read sequencing. How-
ever, despite the strengths of TGS, it still has higher error rates than Illumina’s technology,
the dominant NGS method. This makes the combined use of NGS and TGS crucial for
overcoming various high-throughput sequencing challenges and is becoming a common
approach in large-scale genomic studies, significantly advancing research in hematologic
malignancies like MM [49,127].

Omics fields such as proteomics, metabolomics, and metagenomics aim to fully char-
acterize the biomolecular landscape of MM. Each field presents unique challenges in data
analysis and interpretation, yet they provide valuable insights into biomarkers, therapeu-
tic targets, and the role of the microbiome in MM progression [130,133,155]. However,
translating these findings into clinical practice will require overcoming technical and
validation challenges.
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The integration of complex datasets, comprising genetic, imaging, and clinical infor-
mation, by AI, has revealed substantial potential to enhance the diagnosis of MM, allowing
for the identification of patterns that conventional approaches may fail to recognize. Dif-
ferent studies reviewed in this work demonstrate significant advancements, particularly
in distinguishing MM from related conditions using ML algorithms. Furthermore, AI
can enhance prognostic capabilities by analyzing clinical data and identifying risk factors,
potentially allowing for more tailored treatment plans based on individual patient profiles.
In addition, AI shows promising potential in drug discovery for MM [205]. AI-driven
analyses of large-scale multiomics datasets could offer the possibility of identifying novel
drug targets and predicting therapeutic efficacy, which could significantly accelerate the
development of new treatments, though further research and validation are needed to fully
realize its impact in this area.

Despite these promising outcomes, the limitations of current AI-based approaches
cannot be overlooked. Many models, while demonstrating high accuracy, are constrained
by small validation datasets, incomplete clinical data, and limited context applicability. For
instance, several diagnostic models relied on BM biopsy samples, which are invasive and
may not always be available. In contrast, imaging techniques such as MRI and PET-CT
offer non-invasive alternatives that can assist in both diagnosis and prognosis by providing
detailed visualization of bone lesions and soft tissue involvement, reducing the need for
invasive procedures while still delivering crucial clinical information. Additionally, while
some algorithms perform well in structured datasets, their performance in real-world,
heterogeneous populations remains to be fully validated. Furthermore, challenges such as
variations in staining techniques, sample sizes, and the exclusion of complex cases from
training datasets limit the clinical application of these models.

In response to these limitations, it is essential to emphasize that the efficacy of AI
in MM diagnostics hinges significantly on the availability of high-quality, validated, and
reproducible datasets. Current AI models often face challenges due to incomplete or
inconsistently labeled data, limiting their reproducibility and clinical relevance. To address
this, a robust focus on research dedicated to curating comprehensive and standardized
datasets is imperative. Such datasets, appropriately labeled and validated, would enhance
the reliability of AI models, enabling more accurate and clinically applicable diagnostic
tools. Addressing these limitations through larger, multicenter studies and integrating
more diverse clinical and genomic factors will be essential for refining AI-driven diagnostic
tools. Nevertheless, AI holds considerable promise in improving diagnostic and prognostic
accuracy, advancing drug discovery, and supporting personalized treatment strategies for
MM, underscoring the need for ongoing development and validation efforts.

MM’s complexity, marked by diverse genetic, phenotypic, and clinical manifestations
that often overlap with other plasma cell disorders, presents considerable challenges for
accurate and timely diagnosis. Early detection is essential for improving patient outcomes;
however, the insidious nature of MM frequently results in misdiagnosis or delays until
the disease reaches a more advanced stage. These novel technologies, omics –with the
inclusion of high-throughput sequencing- and AI, despite their limitations, offer promising
strategies for the future development of precision medicine in the diagnosis, prognosis,
and improvement of treatment of MM.
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