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Abstract 
This short insight covers some of the recent topics relevant to the field 
of cadherin–catenin adhesion in mediating connections between 
different cell types, so-called heterotypic or heterocellular 
connections, in both homeostasis and cancer. These scientific 
discoveries are increasing our understanding of how multiple cells 
residing in complex tissues can be instructed by cadherin adhesion 
receptors to regulate tissue architecture and function and how these 
cadherin-mediated heterocellular connections spur tumor growth and 
the acquisition of malignant characteristics in tumor cells. Overall, the 
findings that have emerged over the past few years are elucidating 
the complexity of the functional roles of the cadherin–catenin 
complexes. Future exciting research lies ahead in order to understand 
the physical basis of these heterotypic interactions and their influence 
on the behavior of heterogeneous cellular populations as well as their 
roles in mediating phenotypic and genetic changes as cells evolve 
through complex environments during morphogenesis and cancer.
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Introduction
Cadherin–catenin-mediated adhesion at adherens junctions (AJs) 
is fundamental for the establishment of the physical association 
between cells in multicellular organisms, coordinating the arranged 
and polarized development, architecture, and function of tissues1–3. 
The last several years of scientific discovery have been instrumental 
in understanding the dynamic structure and regulation of the stabil-
ity of the cadherin–catenin complexes at the membrane as well as the 
connection of these complexes with the cytoskeleton. In addition, 
these findings also unveiled roles for cadherin complexes beyond 
their structural function such as directing cell polarity or behaving 
as sensors of mechanical inputs and signaling cues. Each of these 
cadherin–catenin functions features prominently in the regulation 
of several aspects of cell behavior, including cell proliferation, cell 
fate, and cell migration during development and homeostasis, and 
their importance is confirmed when these functions go awry in dis-
ease. Many of these findings have been thoroughly documented 
by several excellent reviews elsewhere1–11. In this short review, we 
highlight some advances in the role of mammalian classical cadher-
ins that have emerged in the past decade beyond their function of 
mediating homotypic adhesion (between equal cell types) and focus 
on their part in coordinating cell behavior by establishing hetero-
typic or heterocellular connections (between different cell types) in 
homeostasis and cancer.

Organization of the cadherin–catenin complex
Cadherins belong to a superfamily of proteins defined by a shared 
ectodomain that presents a tandem of an immunoglobulin-like  
module defined as the extracellular cadherin (EC) repeats8,12,13. 
Based on this structure, cadherins can be classified into several  

subfamilies14. Here, we focus our attention on the classical sub-
family of cadherins, since their function in mediating adhe-
sive interactions at AJs between adjoining cells has been better  
defined. The paradigmatic organization of classic cadherin junc-
tional complexes involves the presence of a single pass cadherin 
transmembrane adhesion receptor presenting five extracellular 
calcium-binding EC repeats. This extracellular domain establishes 
dynamic adhesive interactions with opposing membrane-embed-
ded cadherin complexes in neighboring cells1–3. The stabilization 
of these adhesive contacts occurs via the intracellular domain of 
the cadherin molecule through interaction with the catenin pro-
teins p120-catenin (p120) and β-catenin, which dynamically  
regulate cell adhesion as well as other aspects of cell behavior1–3. 
p120 binds directly to the juxtamembrane domain (JMD) of the 
cadherin tail and controls its stability at the plasma membrane.  
β-catenin, although well known for its signaling function in the  
Wnt pathway, also binds the C-terminal domain of cadherins 
through the catenin-binding domain, mediating the connection 
with α-catenin. In turn, α-catenin interacts with actin-binding pro-
teins connecting the cadherin complex to the actin cytoskeleton3,4  
(Figure 1).

Establishing classical cadherin connections
The different members of the classical cadherin subfamily were 
initially named after the tissue in which they are preferentially 
expressed (e.g. epithelial [E], neural [N], placental [P], retinal 
[R], and vascular endothelial [VE]). These adhesion receptors  
are mainly involved in homophilic cell–cell interactions  
(between identical cadherins); however, heterophilic cadherin 
cell–cell interactions (between different cadherins) can also occur, 

Figure 1. Structural organization of classical cadherin–catenin complexes. A) Epithelial cells establishing adhesive cadherin interactions 
(E-cadherin, green; actin, red). B) Schematic organization of the cadherin–catenin complexes. Cadherin transmembrane adhesion receptors 
establish dynamic adhesive interactions within opposing membranes in neighboring cells. Through the cadherin intracellular domain, 
cadherin molecules interact with p120-catenin (p120) and β-catenin. p120 binds directly to the juxtamembrane domain of the cadherin tail 
and β-catenin binds to the cadherin C-terminal domain, mediating the connection with α-catenin, which in turn mediates the association of 
the cadherin complex to the actin cytoskeleton. EC1–5, extracellular cadherin subdomain 1–5.
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as we will discuss later in the text. Upon ligation, the EC repeats 
strengthen the adhesive binding by mediating not only trans  
interactions between cadherins on opposing membranes but also 
cis interactions, leading to the formation of cadherin dimers, oli-
gomers, and clusters. This modular organization at the interphase 
of adhesion of adjacent cells provides adhesive cells mechanical 
resistance and strength, allowing them to respond as a coordinated 
tissue to cues arising from the environment3–6.

Recent advances have provided novel insight into the mecha-
nisms underlying clustering regulation through key cortical regu-
lators15. In the absence of cadherin ligation, cadherins are able to 
organize into minimal clusters in a cortical actin-dependent man-
ner. Under these conditions, cortical actin acts as a fence, limiting 
the dispersion of cadherin complexes16,17. Upon cadherin ligation, 
the formation of cadherin clusters increases, coordinating intercel-
lular adhesion18. At the cadherin cytoplasmic domain, the strength 
of adhesion is regulated by the former’s binding to catenins and by 
the direct or indirect association of other intracellular molecules 
that link the cadherin–catenin complex to the actin cytoskeleton2. 
Among these molecules, the Rho GTPase family members Rho, 
Rac, and Cdc42 play a critical role. In particular, each molecule 
performs specific functions in maturation, polarized distribution, 
or tension promotion via actomyosin contractility, leading to the 
formation of robust cell–cell interactions2. Importantly, the cross-
talk between AJs and Rho GTPases is bidirectional: Rho GTPases  
participate in the formation and maintenance of AJs, whereas 
AJs modify the activity of these GTPases, leading to changes in 
the structure and polarity of the cell11. Owing to their relevance in 
development and disease, substantial efforts have been made to 
understand the mechanisms that regulate the expression, functional 
activity, and binding specificity of cadherins and thus the adhesive 
properties of cells.

Cadherin binding specificity and cell sorting
The expression of specific members of the cadherin subfamily  
has a major role in allocating defined cell types to their proper  
positions during development, generating defined tridimensional 
structures that are important for tissue function8,19. The involve-
ment of differential cadherin binding in cell sorting was initially 
addressed using cell aggregation assays carried mainly in cell  
suspensions. In these assays, cells transfected with different  
cadherin subtypes aggregated only with cells expressing the same 
cadherin molecule but not with cells expressing other cadherin  
subtypes20–22. This indicated that the nature of cadherin-mediated 
cell adhesion is selective and led to the notion that homophilic 
cadherin interactions direct the differential distribution of cellular 
populations.

The cell-sorting phenomenon is observed in several developmental 
processes, such as the formation of the neural tube in vertebrates, 
where the differential expression of E- and N-cadherin contrib-
utes to the separation of the N-cadherin-positive neural tube cells 
from the E-cadherin-positive embryonic ectoderm layer. Dur-
ing this process, the ectodermal cells switch their expression of  
E-cadherin to the expression of N-cadherin through an epithe-
lial-to-mesenchymal transition (EMT) process, where epithelial  
cells acquire mesenchymal features as well as migratory and 
invasive characteristics. The expression of N-cadherin confers on 

neural cells, among other features, a different adhesive property, 
facilitating their displacement from the ectoderm and the for-
mation of the neural tube, where cells homotypically associate  
through N-cadherin23. In adult tissues, the relevance of cadherin-
mediated adhesion in cell sorting is best exemplified by its role 
in EMT and metastasis, where the loss of E-cadherin expression, 
along with the upregulation of N-cadherin, facilitates the displace-
ment of N-cadherin invasive cells from the primary tumor, which 
is considered a hallmark of malignancy24,25. The occurrence of this 
cadherin switch in biological processes fostered further the concept 
of a role of homophilic and homotypic cadherin interactions in cell 
sorting during development, tissue repair, and cancer.

However, several lines of evidence have uncovered the existence 
of adhesive interactions between cells expressing different cad-
herin molecules26–29. This was also observed in adhesion experi-
ments of cells bound to immobilized cadherin ectodomains of  
different cadherin subtypes30. These assessments of cadherin  
ligation were conducted under shear forces and exposed the  
relevance of the strength of adhesion rather than the specific  
expression of a particular cadherin subtype in cadherin-mediated 
cell sorting. The aforementioned binding of different cadherin  
subtypes involves both the expression levels of a given cadherin 
subtype and the strength of adhesion28. Thus, cell segregation is not 
regulated by cadherin binding specificity but by cadherin-relative 
levels, affinity, and physical strength, in agreement with the dif-
ferential adhesion hypothesis postulated by Steinberg31. Although 
the physical basis of these cadherin interactions is not completely 
understood, some of the functional effects of cadherin heterotypic 
interactions on different aspects of cell behavior have emerged in 
past years, as we discuss in the next section.

Cadherin binding: connecting different cell types
The development and function of organs involve a highly dynamic 
and complex coordination of multiple cell types within tissues 
to maintain their architecture and fulfill their specialized tasks, 
enabling them to adapt to environmental changes. These interac-
tions start from the formation of the germ layers: the ectoderm,  
mesoderm, and endoderm32. Early in organogenesis, epithelial 
and mesenchymal cells derived from different germ layers inter-
act spatiotemporally, giving rise to the diverse body plans that 
result in functional organs. These developmental processes require 
complex gene networks, cell signaling, and gene-regulated cell 
behaviors such as cell division, adhesion, repulsion, polarization, 
apoptosis, contraction, extracellular matrix secretion, and signal 
secretion and reception33. The dynamic regulation of cadherin 
cell adhesion and its specific spatiotemporal expression pattern is 
critical during development and adult tissue homeostasis, allow-
ing the establishment of connections with similar and different 
cellular types present in the tissue. For example, in normal skin,  
E-cadherin homotypic adhesions are established between epider-
mal keratinocytes and Langerhans cells34. In a similar scenario, 
keratinocytes are able to establish interactions with melano-
cytes and Merkel cells via E-cadherin35,36 and P-cadherin36,37,  
allowing the proper distribution and functioning of these differ-
ent cell types within the tissue. However, several reports have  
also indicated the existence of heterocellular interactions between 
different mammalian cell types mediated by different cadherin  
subtypes.
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Some of the earliest observations indicating the existence of N- 
and E-cadherin heterotypic interactions between mammalian cells  
were made between liver cells and fibroblasts38,39, and such inter-
actions induced the reorganization of the actin cytoskeleton into 
lamella-like structures38. This phenomenon was also observed in 
co-cultures of liver and retinal cells expressing N-cadherin and  
L-CAM, respectively26, and between N-cadherin-expressing  
fibroblasts and E-cadherin-expressing MDCK cells, but since 
the latter also express other cadherin subtypes, this might have  
contributed to establishing adhesive interactions38. Although  
concomitant expression of E- and N-cadherin was not found in  
epithelial cells in any of the cellular systems mentioned above, 
both E- and N-cadherin were found to be expressed in hepatocytes 
and liver carcinoma cells forming adhesive structures between 
neighboring cells and fibroblasts40. Which, then, are the molecular 
events that dictate the establishment of homotypic or heterotypic 
cadherin interactions that may account for the selective associa-
tion of different cell types? The physical basis for these interac-
tions is still not completely understood, but some findings have  
provided insightful information regarding the differential dimeri-
zation affinities between homophilic and heterophilic cadherin 
interactions. In this regard, laminar flow approaches, biophysical 
studies, and structural analyses have shown that N-cadherin forms 
homodimers with higher affinity than those formed by E-cadherin. 
But, when these two cadherins form trans-heterophilic dimers, the 
strength of their binding affinities is higher than the E-cadherin 
homophilic bonds30,41,42. This process could also be potentially 
determined by the cadherin levels present at the cell membrane that 
are available to establish these interactions7,9,10 and by mechanical 
forces exerted through the association of the cadherin molecules 
at the cytoplasm with the actin cytoskeleton4–6. Thus, the selec-
tive association into homophilic or heterophilic cadherin interac-
tions may be attributable in part to a combination of differential 
affinities between the cadherin bonds, the surface levels of each of 
these molecules in different cell types, and the adhesive strength 
and mechanical forces. These findings suggest that a balanced 
ratio between homophilic and heterophilic cadherin interactions  
facilitates the existence of both types of interactions between the 
different cell types that dwell in specific tissues. However, when 
this balance is impaired and favors stronger heterotypic interac-
tions, these may lead to changes in tissue patterning as well as 
increased associations between different cell types. Different  
heterocellular interactions have been documented. Here, we focus 
on those established by epithelial cells and fibroblasts, since they 
have started to be better defined.

Fibroblasts are the most abundant cell type found in the stroma 
surrounding epithelial tissues. In cancer, fibroblasts can promote 
tumor growth and the acquisition of malignant characteristics by 
secreting tumor-promoting factors43. A recent study has provided 
relevant insight into how the direct contact of fibroblasts with 
invading human carcinoma cells controls their invasive character-
istics44. In this study, cancer cells were found to associate directly 
with fibroblasts by establishing E- and N-cadherin heterotypic 
interactions, which attained adhesive resistance and mechanical 
strength, allowing the collective invasion of cancer cells through 
their associations with α-catenin/vinculin. Interestingly, the fibrob-
lasts that were directionally attracted and migrating towards cancer 
cells, upon heterotypic binding, inverted their front/rear polarity 

in an N-cadherin- and afadin-dependent manner and exerted pull-
ing forces onto tumor cells fostering their collective invasion44.  
Compounding the underlying complexities associated with  
tumorigenesis, the functional consequences of the establishment of 
heterotypic cadherin interactions between cancer cells and fibrob-
lasts in promoting collective invasion are opening up a new way 
in which tumors exploit the tumor-promoting microenvironment to 
acquire malignant characteristics, in particular in metastatic tumors 
that do not undergo EMT events and still maintain the expression of 
E-cadherin at the membrane45,46. Interestingly, the metastatic poten-
tial of E-cadherin-expressing tumor cells has also been associated 
with reductions in the functional activity of E-cadherin to mediate 
adhesive homotypic interactions47. Putting both scenarios together, 
an interesting possibility is that, under these conditions, stronger 
heterotypic cadherin adhesions may be rather favored, allow-
ing the interactions of cancer cells with tumor-promoting stromal  
cells. Whether other cellular types or tissue-specific differences 
may render different cellular responses upon the establishment of 
heterocellular cadherin adhesion is still an open question for the 
future. In this regard, interactions between melanoma cells with 
fibroblasts via N-cadherin have been shown to be required for their 
survival, while the interaction of melanoma cells with endothelial 
cells by N-cadherin has been involved in their transendothelial 
migration48,49.

In addition to fibroblasts, the tissue microenvironment comprises 
numerous cell types that have a major role in the regulation of  
tissue homeostasis and the outcome of tumor malignancy. One 
characteristic of developing tumors is the presence of inflamma-
tory microenvironments that may exert an inhibitory or a promoting 
effect on tumorigenesis50–53. In recent years, several findings have 
unveiled the expression of cadherins in immune cells including  
T cells, dendritic cells, Langerhans cells, and macrophages and the 
adhesive interactions mediating the connection between immune 
cells or between immune cells and epithelial or endothelial cells. 
Although the physical basis of these associations is not completely 
understood, some of their roles in modulating immune function 
have surfaced in the past few years54–57. In normal skin, keratinoc-
ytes and Langerhans cells associate through homotypic E-cadherin 
adhesion34, regulating Langerhans cell retention as well as holding 
them in an undifferentiated state58. In the intestinal epithelia, epi-
thelial cells establish heterotypic interactions with T lymphocytes59. 
This can be mediated through the binding of T cells expressing 
αEβ7integrin (also known as CD103) with E-cadherin in epithelial 
cells60. αEβ7integrin-positive T cells provide surveillance against 
harmful infections, transform epithelial cells, and participate in  
tissue repair. One example is the cytolysis of pancreatic carcinoma 
cells that maintain the expression of E-cadherin at the membrane 
through the heterotypic interactions with αEβ7integrin-positive  
T cells61. Other specific subsets of T lymphocytes express another 
receptor for E-, N-, and R-cadherins known as killer cell lectin-
like receptor G1 (KLRG1)62–64, which is an inhibitory receptor  
expressed on steady-state natural killer (NK) cells as well as in 
CD8+ T cells. Through these heterotypic interactions, E-cadherin is 
able to regulate TCR signaling, while KLRG1 in turn regulates cell 
adhesion dynamics and E-cadherin signaling in epithelial cells55. 
Additional studies have also shown that E-cadherin-mediated 
adhesion regulates the functions of innate immune cells, such as 
mononuclear phagocytes. E-cadherin is expressed by alternatively 
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activated M2 macrophages65,66, which are tightly associated with 
fostering tumor-promoting microenvironments67. Interestingly, the 
expression of E-cadherin is not necessary for M2 polarization in 
vivo68, but it allows the heterotypic association of macrophages 
with T cells expressing CD103 and KLRG1, potentially regulating 
their retention in tissues and their polarization66. Future research 
may increase our understanding of the potential implications of 
these emerging heterocellular associations mediated by cadherins 
in modulating the function of immune cells in the context of cancer 
and tumor plasticity.

Future directions
It is well established that cadherin-mediated adhesion is an impor-
tant determinant for development, tissue architecture, and function 
and that the loss or alterations in the functional activity of cadherins 
are important determinants for tumor progression. In this short over-
view, we summarized some recent findings that are increasing our 
awareness of the numerous heterocellular interactions established 
by mammalian classical cadherins. Future research will lead to a 
better understanding of the growing complexity of these connec-
tions. For example, what is the physical basis of the establishment 
of these heterotypic interactions, and what dictates the biological 
differential affinities between different cell types? With the current 
technological advances at hand, including super resolution imag-
ing as well as structural, engineering, and biochemical approaches, 
future research will soon shed light onto the molecular nature of 
these heterotypic interactions in defined cellular populations and 
the involvement of the strength of adhesion in these events. In addi-
tion, live cell imaging and mechanical and ultrastructural analyses 
of cells establishing heterotypic interactions within tissues will be 
instrumental to the elucidation of the role of these connections in 
morphogenesis, homeostasis, and cancer. The particular features 
of these connections regulating cell adhesion dynamics, mechan-
ics, and signaling may underlie additional levels of control of  

different cellular processes, including cell sorting, cell polarity, and  
cell division, and overall tissue organization or immune regulation, 
enabling cells to sense, signal, and respond to specific spatiotempo-
ral changes in their environment. Moreover, tumors have now come 
to be understood to function as complex tissues in which numer-
ous cells, collectively termed the tumor microenvironment, play 
a critical role. Thus, elucidating the role of heterotypic cadherin 
interactions in regulating chronic inflammation, cell growth, and 
survival and the malignant characteristics of clonal populations of 
tumor cells in specific tumors will reveal additional mechanisms of 
tumorigenesis as cells evolve through complex environments that 
may spawn a new era of therapeutic strategies directed towards the 
eradication of tumors.
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p120-catenin.
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