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Simple Summary: Colorectal cancer (CRC) is the third leading cause of cancer and the second most
deadly tumor type in the world. The liver is the most common site of metastasis in CRC patients.
The conversion of new imaging biomarkers into diagnostic, prognostic and predictive signatures, by
the development of radiomics and radiogenomics, is an important potential new tool for the clinical
management of cancer patients. In this review, we assess the knowledge gained from radiomics and
radiogenomics studies in liver metastatic colorectal cancer patients and their possible use for early
diagnosis, response assessment and treatment decisions.

Abstract: Radiomics is a developing new discipline that analyzes conventional medical images to
extract quantifiable data that can be mined for new biomarkers that show the biology of pathological
processes at microscopic levels. These data can be converted into image-based signatures to improve
diagnostic, prognostic and predictive accuracy in cancer patients. The combination of radiomics
and molecular data, called radiogenomics, has clear implications for cancer patients’ management.
Though some studies have focused on radiogenomics signatures in hepatocellular carcinoma patients,
only a few have examined colorectal cancer metastatic lesions in the liver. Moreover, the need to
differentiate between liver lesions is fundamental for accurate diagnosis and treatment. In this
review, we summarize the knowledge gained from radiomics and radiogenomics studies in hepatic
metastatic colorectal cancer patients and their use in early diagnosis, response assessment and
treatment decisions. We also investigate their value as possible prognostic biomarkers. In addition,
the great potential of image mining to provide a comprehensive view of liver niche formation is
examined thoroughly. Finally, new challenges and current limitations for the early detection of the
liver premetastatic niche, based on radiomics and radiogenomics, are also discussed.

Keywords: colon cancer; liver metastasis; radiogenomics; radiomics; metastatic niche; early detection

1. Introduction

Colorectal cancer (CRC) is the third leading cause of cancer and the second most
deadly tumor type in the world [1]. The liver is the most common site of metastasis in CRC
patients [2]. Approximately 50% of CRC patients will develop liver metastasis at some
point during their disease course [3]. Prediction of the development of liver metastasis and
the response to treatment or survival of these patients would help to improve therapeutic
protocols. This is why several studies have looked at how mathematical models for
diagnosis, prediction of response and survival in patients with metastatic CRC (mCRC)
can be developed from radiomics and radiogenomics technology.
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Radiomics is a developing discipline that analyzes and extracts data from medical
images, including quantitative and qualitative characteristics invisible to the human eye.
The development of this type of analysis requires the acquisition of images; the creation of
datasets; the export of DICOM files; the identification of the relevant volume by automatic,
semi-automatic or manual segmentation tools; the extraction and qualification of image
features; the use of the data generated; the construction of a predictive model; and the
validation of the models created. Morphological features obtained include volume, shape,
3D geometry, diameter, surface area, sphericity, location, vascularization and necrosis,
among others. First-order statistics include mean, median, standard deviation (SD), kurtosis
and entropy, among others. Second-order statistics include the ratio in an inter-voxel image,
the co-occurrence matrix, matrix length and matrix size, among others. Higher or higher-
order statistics include the relationship with neighboring voxels. For the prediction model,
clinical, pathological and genomic relationships are established. Thus, radiogenomics
allows the integration of radiomic findings and molecular alterations, facilitating precision
medicine tools such as diagnosis, prognosis, prediction of response or recurrence and
improved treatment selection. Several publications explain the use of radiomics and
radiogenomics in primary liver tumors [4]. However, there are few studies of this discipline
in liver metastasis.

In this study, we reviewed the knowledge gained from radiomics and radiogenomics
studies in hepatic metastatic colorectal cancer patients and their possible use as clinical
tools in colorectal cancer patients’ management. We also studied the chance to provide a
comprehensive view of liver niche formation by radiomics and radiogenomics. Therefore,
we searched in PubMed and MEDLINE for the following keywords: “radiogenomics liver
metastases”, “radiogenomics liver cancer”, “Radiomics AND angiogenesis”, “Radiomics
AND Immune surveillance”, “Radiomics AND Immune”, “Radiomics AND early cancer
liver diagnostic” and “Radiomics AND early liver metastases diagnostic”.

2. Clinical Benefit of Radiogenomics in Metastatic Colorectal Cancer Patients

Numerous studies focused on radiomics and radiogenomics studies in hepatic
metastatic colorectal cancer patients pointed out their use in early diagnosis, response
assessment and treatment decisions (Table 1).
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Table 1. Clinical benefits of radiomic and radiogenomics in CRC liver metastatic patients.

Study Design Imaging
Modalities Sample Size Study Cohorts and Validation Tools for Radiomics

Calculations Statistical Model Construction

Early diagnosis of colorectal cancer metastasis

Becker et al., 2018 [5] Preclinical MRI 8 male mice One cohort MATLAB routine
Linear regression model, Pearson

correlation test and hierarchical cluster
analysis

Taghavi et al., 2021 [6] Retrospective CT 91 CRC without LM at
diagnosis

Two cohorts. Patients with metastases
in follow-up of ≥24 months (n = 67);

and patients who developed
metachronous liver metastases <24

months (n = 24). No validation

Philips Intellispace Portal
software and PyRadiomics

Kruskal–Wallis test, inter-correlated
features and Bayesian-optimized

random forest was used for prediction
models.

Rao et al., 2014 [7] Retrospective CT 29 CRC patients

Three cohorts. Patients without LM
(n = 15), with synchronous LM (n = 10)

and metachronous LM within 18
months following primary staging

(n = 4). No validation

MATLAB routine

Student’s t test or Mann–Whitney U
test. ROC analyses to determine the
potential diagnostic performance of
the respective texture parameters for
diagnosing the presence of metastatic

disease.

Liang et al., 2019 [8] Retrospective MRI 108 rectal cancer patients

Two cohorts. 54 patients with LM and
54 without LM.

The results of the one-round
cross-validation were stabilized and

representative.

Python in Anaconda3
platform with Scikit-learn
and Matplotlib packages.

Models were evaluated with
indicators of accuracy, sensitivity,

specificity and AUC, and compared by
DeLong test.

Oyama et al., 2019 [9] Retrospective MRI
150 liver tumors. 50 HCC,

50 LM and 50 HHs in 37, 23
and 33 patients

One cohort.

MATLAB Image Processing
Toolbox, Signal Processing

Toolbox, Statistics and
Machine Learning Toolbox,

and Wavelet Toolbox

Two machine learning models: a
logistic classifier model with an elastic

net penalty and extreme gradient
boosting (XGBoost)

Li et al., 2017 [10] Retrospective MRI 162 patients

Three cohorts. HHs (n = 55), LM
(n = 67) and HCC (n = 40).

The test datasets validated the
reliability of the models

R software (R Core Team,
Vienna, Austria) and

MATLAB R2013b
(Mathworks, Natick, MA,

USA)

Kruskal–Walls test, ROC curve and
AUC analysis to differentiate three

subtypes. K-nearest neighbor classifier
model, back-propagation artificial
neural network classifier model,

support vector machine and logistic
regression were used for improving

accuracy for classifier.
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Table 1. Cont.

Study Design Imaging
Modalities Sample Size Study Cohorts and Validation Tools for Radiomics

Calculations Statistical Model Construction

Jansen et al., 2019 [11] Retrospective MRI
95 patients with 125 benign

lesions and 88 malignant
lesions

Two cohorts, benign and malignant
lesions. 40 adenomas, 29 cysts and 56

HHs; and 30 HCC and 58 LM.
Optimization process using

cross-validation.

-
ANOVA F-score was selected and fed
into an extremely randomized trees
classifier and ROC curve analysis.

Gatos et al., 2017 [12] Retrospective MRI 71 FLLs. 30 benign lesions
and 41 malignant lesions

Three cohorts. 30 benign lesions, 19
HCC and 22 LM.

No validation
-

Probabilistic Neural Network (PNN)
model evaluation was performed

using the leave-one-out (LOO) method
and receiver operating characteristic

(ROC) curve analysis. Multilinear
regression analysis.

Response assessment and treatment decision tool

Taghavi et al., 2021 [13] Retrospective CT 90 CRC patients with 140
LM treated by ablation

Two cohorts. Training (n = 63
patients/n = 94 lesions) and validation
(n = 27 patients/n = 46 lesions) cohort.

Each patient was considered as one
group in the fivefold cross-validation

to ensure that all lesions for each
patient were in the training/test set of

a fold

3D slicer and 3D using the
Pyradiomics package in

Python (3.7)

Three models: each model was based
on a Cox’s proportional hazards

model.

Staal et al., 2021 [14] Retrospective CT 82 CRC patients with 127
LM treated by ablation

One cohort.
Internal validation. -

Kruskal–Wallis test was applied to
evaluate whether the selected

radiomics features were influenced by
differences between scanners.

Combined model yielded a c-statistic.
Multivariable Cox regression

Reimer et al., 2018 [15] Retrospective MRI 37 CRLM patients treated
by TARE One cohort.

Mint Lesion ™ 3.0 (Mint
Medical GmbH,

Dossenheim, Germany)

Mann–Whitney U test. AUC and
sensitivity and specificity were

calculated.

Shuer et al., 2019 [16] Retrospective CT and MRI 102 CRLM treated by
resection One cohort. Pyradiomics plugin to 3D

Slicer Cox regression coefficients
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Table 1. Cont.

Study Design Imaging
Modalities Sample Size Study Cohorts and Validation Tools for Radiomics

Calculations Statistical Model Construction

Ahm et al., 2016 [17] Retrospective

CT including
quadruple-phase

(n = 27),
triple-phase (n =

141),
double-phase (n

= 11) and
single-phase CT

(n = 54)

145 patients
Two cohorts. Validation cohorts
(n = 90) and derivation cohorts

(n = 145).

In-house software program
(Medical Imaging Solution

for Segmentation and
Texture Analysis).

Student t, Mann–Whitney U test, ×2
or Fisher exact test. Multivariate

logistic regression analysis.

Giannini et al., 2020 [18] Included in
HERACLES trial CT 38 patients

Two cohorts. Training cohort 28
patients (108 lesions), validation
cohort 10 patients (33 lesions).

Mipav software. In-house
framework based on C++

and libraries

Genetic algorithms, algorithms
belonging to the computational

intelligence field.

Beckers et al., 2018 [19] Retrospective CT 70 CRLM patients

Two cohorts. 60 patients with
chemotherapy and 10 patients without

chemotherapy.
No validation.

2D Texture analysis was
performed with in-house

software written in Python
(MANGO; Multi-image
Analysis GUI, Research

Imaging Institute).

Shapiro–Wilk test was used to test for
normality. Independent sample t tests.

Multivariable Cox proportional
hazards models

Andersen et al., 2019 [20] Exploratory
study CT 27 CRLM patients treated

by regorafenib One cohort - -

Zhang et al., 2019 [21] Retrospective MRI 26 CRC patients with 193
LM One cohort

MATLAB (MATLAB
R2011b, MathWorks, Inc.,

Natick, MA, USA)

Student’s t test or Mann–Whitney U
test when not normally distributed.

Multivariable logistic regression
analysis

Lubner et al., 2015 [22] Retrospective CT 77 CRLM patients One cohort TexRAD Ltd., (Somerset,
UK)

Correlated using Cox proportional
hazards models

Simpson et al., 2017 [23] Retrospective CT 198 patients One cohort
Scout Liver (Pathfinder

Technologies Inc., Nashville,
TN, USA)

Kaplan–Meier and Cox proportional
hazards models

Ganeshan et al., 2007 [24] Retrospective CT 27 patients One cohort
TexRAD Ltd., (Somerset,

UK) MATLAB (Mathworks
Inc, Natick, MA, USA)

Cox regression analysis and the
statistical significance of contingency
tables was assessed using Fischer’s

exact test.
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Table 1. Cont.

Study Design Imaging
Modalities Sample Size Study Cohorts and Validation Tools for Radiomics

Calculations Statistical Model Construction

Rahmim et al., 2019 [25] Retrospective FDG PET/CT 52 CRLM patients One cohort Hermes Hybrid Viewer
PDR and MATLAB

Kaplan–Meier and Cox proportional
hazards models

Dercle et al., 2020 [26] Retrospective CT 667 CRLM patients

Two cohorts. Randomly assigned (2:1)
to training or validation sets.

Predicted tumor sensitivity to
treatment was measured using AUC

in the validation sets of the four
cohorts consisting of patients that

were not used for training.

MATLAB (Mathworks,
Natick, MA, USA)

Variance and v2 test were performed
to compare categorical variables. Cox
regression was used to investigate the

effect of survival variables, and
log-rank test was used to compare

survival times of two groups.

Dohan et al., 2019 [27] Multicenter
prospective CT

491 CRLM patients treated
by FOLFIRI and

bevacizumab

Two cohorts. Training cohort in 120
patients, and validate cohort in 110
patients. External validation was
performed in another cohort of 40

patients

TexRAD Ltd., (Somerset,
UK)

Multivariable Cox, Kaplan–Meier and
log-rank

Ravanelli et al., 2019 [28] Retrospective CT 43 CRLM patients

Two cohorts. 23 treated with
bevacizumab-containing

chemotherapy (group A), and 20 with
standard chemotherapy (group B)

MATLAB (Natick, MA,
USA) Multivariable logistic regression

CT: computed tomography; MRI: magnetic resonance imaging; FDG PET/CT: fluorodeoxyglucose positron emission tomography/computed tomography; CRC: colorectal carcinoma; LM: liver metastases;
CRCLM: colorectal carcinoma liver metastases; HCC: hepatocellular carcinoma; HHs: hepatic hemangiomas; FLLs: focal liver lesions; AUC: area under curve; ROC: receiver operating characteristic.
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2.1. Early Diagnosis of Colorectal Cancer Metastasis

Computed tomography (CT) is the most common imaging test for studying CRC
patients. However, its ability to detect liver metastases is limited. Magnetic resonance
imaging (MRI) and tissue biopsy are used in selected cases, but these techniques delay
patients’ diagnosis and treatment starting point. As radiomics could help in the diagnosis
of liver metastasis by CT, in line with the data from some studies, Becker and collaborators
investigated various texture features. These included a grey-level co-occurrence matrix,
grey-level run-length matrix and grey level size-zone matrix. Interestingly, they found a
correlation between these features and the occurrence of metastasis prior to their detection
by conventional CT methods [5]. Taghavi et al. and Rao et al. designed a prediction model
for the detection of metachronous metastasis [6,7]. Other authors analyzed MRI (T2 se-
quences) to extract radiomic features [8]. Generally, metastasis appears to be characterized
by high entropy, heterogeneity and variance and may be explained by cell clones, necrosis
and vascularization [29].

To diagnose hepatic lesions, differential diagnosis between different entities is required.
Some authors have studied radiomic parameters in MRI tests to help to differentiate
between tumor and non-tumor lesions [9,10]. Jansen and collaborators used contrast curve,
grey-level histogram and grey-level co-occurrence matrix texture features in MRI images
(DCE and T2 sequences), combined with clinical factors such as steatosis, cirrhosis and
tumors of unknown origin. They classified lesions into five categories: adenoma, cyst,
hemangioma, hepatic primary tumor and metastases of varying sensitivity and specificity
(0.8/0.78, 0.93/0.93, 0.84/0.82, 0.73/0.56 and 0.62/0.77, respectively) [11], which was
similar to the data of Gatos et al. [12]. In short, several authors agree that texture analysis
can help to differentiate between liver metastases and other types of liver lesion [29].

2.2. Response Assessment and Treatment Decision Tool

The correct assessment of response in the treatment of CRC with liver metastasis is
fundamental in defining the success or failure of treatment interventions. In addition,
prediction of early response would improve treatment selection in these patients. In this
context, radiomics and radiogenomics could be very useful.

In the Taghavi et al. study, progression after radiofrequency was assessed with
1,593 radiomic parameters extracted from each lesion [13]. Three prediction models were
constructed: one with radiomic parameters, one with clinical parameters and one with a
combination of radiomic and clinical parameters. This last model had the highest predictive
value. Staal et al. extracted radiomic parameters eight weeks after radiofrequency treatment
in a 10 mm ring from the periablation zone and from the ablation zone on CT in the portal
venous phase. The combination of skewness, uniformity and mean in the periablation
ring were predictors of progression. Again, predictive ability improved when clinical
parameters were combined [14]. Another study evaluated response after radioembolization
with Itrio 90: texture parameters were able to detect relapses 3.5 months earlier than RECIST
criteria [15]. However, not all studies have found statistical differences [16].

The assessment and prediction of response to systemic neoadjuvant treatment is
essential, as this avoids delay in surgery or in the selection of alternative treatments if
patients do not respond. In addition, in unresectable patients, predicting the response to
treatment can avoid ineffective treatment regimens and major side effects.

In patients treated with FOLFOX or FOLFIRI, low skewness was associated with a
high response rate to chemotherapy, validated in an external cohort [17]. In the evaluation
of response with dual anti-Her2 treatment, another study identified heterogeneity features
related to treatment response, although the results need to be validated, as the study
authors themselves affirmed [18]. High entropy and low homogeneity after chemotherapy
were associated with earlier response prediction than RECIST [19–22]. These data suggest
that texture may be a predictor of response in patients receiving chemotherapy.
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2.3. Radiomics as a Prognostic Tool

Radiomics and radiogenomics could also become a prognostic assessment tool in
mCRC patients, as some authors have suggested.

An association between entropy and prognosis has been demonstrated [19,20,22].
Homogeneity in the texture of healthy liver tissue is predictive of worse survival [23,24].
Andersen et al. described, with CT images, an association between homogeneity param-
eters and worse overall survival (OS) [20]. However, Rahmim and collaborators, in a
multivariate analysis, showed radiomic parameters of heterogeneity on FDG PET as pre-
dictors of lower OS [25]. Lubner et al. reported that the degree of skewness was inversely
related to mutations in KRAS and that entropy was associated with OS [22]. In the same
study, the authors demonstrated the association of lower entropy, SD and high mean
positive pixels with tumor grade in CT images, validating the results. In addition to the
survival advantages of some imaging parameters, the possibility of stratifying patients
for recurrence in liver remnants has been shown [23]. Ravanelli et al. related high CT
uniformity and low OS and PFS in patients with CRC and liver metastasis [28].

Some studies analyzed radiomic parameters for survival prediction with various
chemotherapy schedules. In one study, radiomic parameters associated with patients
treated with FOLFIRI with or without cetuximab were found to be predictors of sensi-
tivity and were associated with OS [26]. In the combination of first-line FOLFIRI and
bevacizumab [27], the decrease in the sum of lesions, the decrease in kurtosis and the
high density of DLL were predictors of OS. These findings were confirmed in an external
cohort, but the morphological response was not associated with OS, which cast doubt on
the usefulness of RECIST.

3. Liver Premetastatic Niche Formation in CRC Patients

Invasion and tumor cell growth are necessary for metastasis formation, but only 0.01%
of circulating tumor cells are able to develop distant metastatic nodes [30]. The liver is the
most common site for metastasis in CRC patients [2], due in part to anatomical distribution
since the portal vein and hepatic artery supply blood to the liver and, in part, because
cancer cells disseminating from the colon easily access the liver through the portal vein [31].

Tumor-derived factors, including pro-angiogenic and pro-inflammatory factors, are
released from the primary tumor to prepare distant metastatic niches [32,33]. These factors
promote the recruitment into the hepatic pre-metastatic niche of different microenviron-
ment cells, such as Kupffer cells, hepatic stellate cells, myeloid-derived suppressor cells
and neutrophils, all of which play a key role in niche generation [31]. This process can
be divided into three different phases: extravasation and angiogenic process, immune
surveillance evasion and organotropism and tumor growth. Imaging could provide a
comprehensive view of these niche formation phases, thus increasing the early detection
of liver metastasis in CRC patients. It might even be possible to detect early changes in
the metastatic niche that are not captured by standard clinical imaging techniques during
the follow-up of patients (Figure 1). Such changes could lead to the adjustment of therapy
towards more aggressive treatments that might disrupt metastatic growth.
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Figure 1. Hunting down liver metastasis in colorectal cancer patients by radiogenomics. The figure shows a compre-
hensive view of metastatic niche formation phases. Reasonably, the different phases of metastatic niche formation (each
one represented by a puzzle piece in the figure) could be detected by radiogenomics approaches in the near future.
The references included in the figure show related manuscript with information about tumor cell extravasation [34,35],
neoangiogenesis [34–47], immunosurveillance evasion [44,47–53] and tumor growth [41] that could be theoretically trans-
lated to metastatic niche detection. Created with BioRender.com.

3.1. Extravasation and Angiogenic Process

Primary tumor cells migrate to blood vessels by means of epithelial–mesenchymal
transition, when they lose their epithelial properties and move across the extracellular
matrix [54,55]. Extravasation in the liver is also a complex process with many compo-
nents involved [30,56,57]. The liver is a highly irrigated organ, which is a clear advan-
tage for tumor colonization, but neoangiogenesis is needed to maintain the high nutri-
ent and oxygen demand of tumor cells [57–59]. Evidence suggests the usefulness of
radiomics or radiogenomics to detect epithelial–mesenchymal transition, vascular invasion,
neoangiogenesis and microvascular density. Xing Liu and collaborators established a
contrasted enhancement-related gene expression signature by combining classic molecular–
pathological biomarkers, whole-genome transcriptome sequencing, clinical characteristics,
radiological manifestations and radiomics. The authors analyzed the data from 155 pa-
tients with anaplastic gliomas and found that identifying the texture features of radiomics
by measuring the inhomogeneity of image patterns may reflect the neoangiogenesis and
epithelial–mesenchymal transition of the tumor [34].

Microvascular invasion is an independent prognostic factor for the overall survival
of hepatocellular carcinoma patients. However, it is not possible to analyze this param-
eter prior to the pathological analysis of tumor tissue. Thus, new biomarkers for the
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early detection of microvascular invasion are needed urgently. Liu P and collaborators
showed the role of radiogenomic analysis in determining microvascular invasion in pre-
operative patients [36]. Moreover, another study corroborated the prognostic value of
these radiogenomic biomarkers of microvascular invasion in hepatocellular carcinoma to
predict patients’ recurrence and survival [37]. The histopathological growth patterns in
colorectal liver metastasis include desmoplastic, pushing and replacement patterns and
two rarer histopathological growth patterns. Differences in microenvironments’ hetero-
geneity involve response to treatments and patient survival. Angiogenesis sprouting and
microvascular invasion are the two principal components defining the histological growth
patterns [38,39]. Yuqi Han and collaborators developed an MRI-based radiomic model to
predict the predominant histopathological growth patterns of colorectal liver metastasis as
a potential biomarker for clinical treatment [60].

Other authors have described related imaging biomarkers to identify angiogenesis
in brain tumors. For instance, aggressive biological processes of cell adhesion and angio-
genesis were enriched in glioblastoma patients with poor overall survival [40]. Moreover,
in glioblastoma patients, radiogenomics analysis showed a radiomic risk score associated
with cell differentiation, cell adhesion and angiogenesis, which contributed to chemore-
sistance [35]. Similarly, in lower-grade glioma patients, a radiogenomics study revealed
a prognostic radiomic signature as a biological surrogate, such as hypoxia, angiogenesis,
apoptosis and cell proliferation, providing prognostic information for these patients [41].
Radiomic features could also reflect the angiogenesis status and microvascular density
in bladder urothelial carcinoma and in clear-cell renal-cell carcinoma [42,43]. Radiomic
parameters also predict microvascular density and angiogenesis in breast cancer [44–46].
In the study by Dooman Arefan and collaborators, a set of radiomic features identified the
heterogeneity of tumor microenvironment cells, with an abundance of fibroblasts and the
presence of endothelial and immune cells [44].

3.2. Immune Surveillance Evasion

After the arrival of the colon cancer cell to the liver, and when cells gain access to
a blood supply, they proliferate to expand the metastatic niche. However, the activation
of cytolytic T-cells, due to the presence of tumor cells, can abrogate tumor growth [61].
Thus, tumor cells can evade the cytotoxic T-cell response via the expression of co-inhibitory
molecules such as CTLA-4 or PD-1 and the promotion of immune surveillance evasion [31].
Moreover, the recruitment to the metastatic niche of different immune cells, such as im-
munosuppressive lymphoid and myeloid subsets, enhances the tumor’s immune tolerance,
which allows the tumor to grow [31]. Several authors described the use of radiomics or
radiogenomics to determine the presence and the amount of immune cells in tumor tissue.
For instance, Seung Hyuck Jeon and collaborators described a radiomic signature that
predicts CD8+ tumor infiltration lymphocyte alterations and suggested its clinical utility
to evaluate tumor immune status after chemoradiotherapy for rectal cancer patients [48].
Moreover, calculation of CD8 infiltration by a radiogenomics signature using CT images
and RNA sequencing data was proposed, in order to predict the immune phenotype of
advanced solid malignant tumors and clinical outcomes of immunotherapy-treated pa-
tients [49]. Similarly, PD-L1-positive and -negative non-small-cell lung cancer patients
could be determined by a deeply learned score derived from 18F-FDG-PET/CT images.
This score also predicts patients’ survival and could be used to guide individual pre-therapy
decisions [50]. MRI radiomic features can also determine PD-1/PD-L1 expression and
prognosis in intrahepatic cholangiocarcinoma patients [51].

In an interesting study by Yunfang Yu and collaborators, the association of a multiomic
signature based on magnetic resonance imaging, radiomic features and tumor microen-
vironment characteristics, including immune cells, was analyzed. Key radiomic features
were associated with various immune cells, including M0 macrophages, B-naïve cells and
neutrophils, and could predict preoperative axillary lymph node metastasis in breast cancer
patients, supporting surgical decisions [52].
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Low and high tumor-associated macrophages can also be differentiated by nanora-
diomic analysis, which reveals texture differences, unlike conventional image-derived
tumor metrics. The latter were unable to differentiate tumors with varying TAM bur-
dens [53]. Specific gene expression sets associated with immune cells and angiogenesis
can also be identified by several different radiomic features in non-small-cell lung cancer
patients [39].

3.3. Organotropism and Tumor Growth

The tumor and distal organs participate in cross-talk by chemokine secretion that con-
ditions the metastatic niche and colon tumor cells’ organotropism to liver invasion. The in-
terplay between different chemokines and receptors, such as CCL20, CCR6, CXCR4 [30,62]
and other secreted proteins, such as carcinoembryonic antigen [63], ostopontin [59] and
integrins including α6β1, α6β4 and/or α2β1 [59], is involved in the retention of metastatic
cells in the liver, as well as in the preparation of the liver environment niche to allow colon
tumor cells’ survival and growth. No specific radiomics or radiogenomics studies have
evaluated the role of radiomic features with these factors. However, it is reasonable to
suggest that specific radiogenomics studies to correlate these factors with radiomic features
will offer data that would easily determine the expression of these metastatic growth factors
by new image biomarkers.

4. Future Perspectives and Challenges for Early Detection of Liver Premetastatic
Niche, Based on Radiogenomic Approaches in Colorectal Cancer Patients

As stated above, the main cause of CRC mortality is metastasis, which is most common
in the liver. Thus, the prevention of recurrence and its early detection in colon cancer
patients are the main goals in clinical practice to improve patients’ survival. To attempt
to achieve these goals, treatment decisions are taken on the basis of the usual histological
and clinical parameters. However, these do not accurately predict the appearance of tumor
metastasis. In fact, adjuvant chemotherapy in stage III patients clearly benefits patients,
but the theoretically beneficial effects in stage II patients are not clear [64]. Moreover, since
oxaliplatin is associated with cumulative neurotoxicity, new data support the advantage of
only 3 months of treatment in those patients with a supposed low risk of recurrence [65].

The involvement of the microenvironment in distal metastatic niche growth is widely
accepted. In fact, the “seed and soil” hypothesis, put forward by Paget et al., suggested
that tumor cells (seeds) travel to distant sites (soil), where the tumor microenvironment is
favorable to colonization [57,66]. However, the current imaging approaches, used daily in
the clinical management of cancer patients, do not reflect numerous microenvironmental
factors, such as angiogenesis, immune cell landscape and stromal density, that might
determine intra-tumor heterogeneity and thus patient survival. Now, though, radiomic
imaging analysis offers the chance to determine these microenvironment events in different
pathologies. Moreover, radiogenomics also supports the possibility of determining the
link between various biomarkers and the biological heterogeneity of tumors, in order
to obtain information about gene expression, signaling pathway activity and tumor mi-
croenvironment features. Taking into account both this scenario and the data given in this
review, it is reasonable to assume that several tumor microenvironment deviations, needed
for metastasis growth, could be detected by the identification of early signs of hepatic
metastatic niche formation and modification. This theoretical framework would help to
prevent the appearance of metastasis by supporting aggressive treatments in patients at
high risk of recurrence, but would avoid these destructive therapies and their important
secondary side effects in patients with low recurrence risk. In addition, early changes in
the metastatic niche, which are not captured in standard clinical imaging techniques, could
be detected during the follow-up of patients. Therapy could be adjusted towards more
aggressive treatments or local radical treatments of the metastatic niche, such as stereotactic
body radiotherapy (SBRT) to disrupt metastatic growth, could be administered. Ultimately,
radiomics research will identify new prognostic biomarkers for setting up tailored and
dynamic therapies based on the molecular characteristics of colon tumors, to prevent liver
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metastasis growth and thus improve patients’ survival. Following this idea, Marjaneh
Taghavi and collaborators analyzed retrospectively the primary staging portal venous
phase CT of 91 CRC patients, who were divided into two groups: patients without liver
metastasis (at primary stage or during the 24 months following diagnosis) and patients
without liver metastasis at diagnosis but who developed liver metastasis in the 24 months
after diagnosis. The authors described a machine learning-based radiomics analysis of
routine clinical CT imaging and provided valuable biomarkers to identify high-risk liver
metastasis from CRC at primary staging [6]. In line with these data, John M Creasy and
collaborators studied 120 stage II/III colon cancer patients grouped by liver recurrence,
extrahepatic recurrence or no evidence of disease at 5 years. The liver parenchyma images
were studied by radiomic techniques. Their data showed CT radiomics as a promising
tool to identify those patients at high risk of developing liver metastasis [67]. Another
approach by Francesco Fiz and colleagues focused on the radiomic features of the tumor,
peritumoral tissue and non-tumoral parenchyma in liver sections from colorectal cancer
metastasis. Interestingly, their radiomics analysis found modifications of the peritumoral
tissue similar to those observed in the tumor, although the radiological view had shown
that this peritumoral tissue was the same as the non-tumoral liver parenchyma. Moreover,
texture differences identified the peritumoral microenvironment as a separate entity from
the normal parenchyma [68].

Another important way to develop radiomics field research is to look at imaging
tests that are routinely used in current clinical practice for colon cancer diagnosis and
patient follow-up. The development of mathematical models based on these imaging tests
could improve the clinical management of patients at no additional cost, thus promoting
personalized medicine in a sustainable and efficient way within the National Health
System.

5. Technical and Clinical Limitations of Radiomics

Although there are not yet many data, these important findings confirm the capacity of
radiomics to detect invisible-to-the-eye features of normal liver parenchyma that are related
to metastatic niche formation. However, many limitations of radiomics and radiogenomics
studies make it difficult to standardize this imaging technology in oncology clinical practice.
Radiomics and radiogenomics are developing disciplines with important limitations that
need to be taken into account.

Perhaps the most important limitation is the heterogeneity of software analysis in
different studies, together with the variety of imaging devices in different hospitals. This
clearly hinders the interpretation of different data for meta-analysis and multicenter studies.
Lesion segmentation, one of the first steps in radiomics analysis, is very important and may
affect results [69]. However, there is no agreement as to the optimal segmentation algorithm.
Some believe that manual segmentation is better and more realistic, but others support
automatic segmentation to avoid inter-observer variability. Semi-automatic segmentation
could be a good option, but this has not been defined. Moreover, the impact of CT contrast
administration and the different acquisition protocols has not been widely studied, which
means that there is no clear evidence of whether a pre-contrast or contrast image dataset is
better in a radiomics study. Similarly, reliable cut-off values are also difficult to determine.
Imaging units are not the same in all centers, which can be especially important, for
example, in MRI from 1.5 to 3 Teslas [16]. Image acquisition protocols vary from institution
to institution and make validation more complex [29]. Due to these limitations, most
studies have a new constraint based on the number of analyzed patients and a lack of
independent validation cohorts. Since it is difficult to find homologous patient series based
on similar image datasets, most analyses are based on retrospective studies of the patients.
In addition, validation between series should be homogeneous, as different treatments may
affect the comparability of results [6,70]. In addition, most of the studies examine only one
geographic region.
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Furthermore, treatment response assessment studies compare their results with RE-
CIST, but it is known that RECIST also has limitations in response assessment [29].

Another important limitation in this research field is the lack of accuracy of “radiomics”
and “radiogenomics” terminology. Many studies are classified as radiomics analysis, al-
though only texture features (entropy, uniformity, kurtosis, skewness, standard deviation)
are analyzed. In addition, genomic studies are sometimes associated with radiotherapy
effects or imaging test changes. Obviously, although studies of standard image character-
istics and associations are highly relevant in cancer research and are very useful during
mCRC diagnosis and patient follow-up, these studies do not qualify as “radiomics” and
“radiogenomics” studies. Moreover, they do not have the robust potential of an imaging
biomarker roadmap, which radiomics or radiogenomics fields do have. This terminological
confusion could create misunderstanding in the literature for readers and researchers.

The imaging biomarker standardization initiative (IBSI) has been proposed by Zwanen-
burg et al. [71]. This initiative includes regulation and consensus on image post-processing,
segmentation, interpolation, intensity conversion, feature extraction and guidelines provid-
ing standardized definitions and validated reference values that facilitate their clinical use.

6. Conclusions: Radiomics Data Derived from Image Tests Are Postulated as
Clear Surrogates

Radiogenomics, the computer extraction of mineable data from image tests together
with the integration of genomic elements, offers an opportunity to deepen our under-
standing of the heterogeneity of the tumor microenvironment, specific tumor mutation
and the main tumor-activated pathways. In short, it can generate promising radiomic
signatures from entire organs, which may serve as good surrogate biomarkers to grasp, in
a non-invasive and extremely personal way, “what is going on in the tumor” and, in the
case of CRC liver metastasis, to decode early metastatic niche phenotypes.

Radiomics and radiogenomics are very young research fields. These tools have great
potential for clinical use in the context of personalized medicine. Their utility has been
demonstrated in early diagnosis, differential diagnosis, treatment selection and patient
prognosis. However, multiple limitations have to be overcome before this technology can be
translated to the clinical management of cancer patients. Nevertheless, they undoubtedly
show tremendous potential for improving our knowledge and developing new clinical
tools, based on the application of computer techniques and data processing. These tools
can be used to plan the treatment of cancer patients early, dynamically and individually, i.e.,
not simply treating the disease but attempting to administer personally tailored medicine.
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