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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. KRAS mutations
occur in up to 95% of cases and render the tumor resistant to many types of therapy. Therefore,
these patients are treated with traditional cytotoxic agents, according to guidelines. The familial or
hereditary form of the disease accounts for up to 10–15% of cases. We hypothesized that hereditary
and Familial Pancreatic Cancer cases (H/FPC) have a distinct tumor specific mutation profile due to
the presence of pathogenic germline mutations and we used circulating free DNA (cfDNA) in plasma
to assess this hypothesis. H/FPC cases were mainly KRAS mutation negative and harbored tumor
specific mutations that are potential treatment targets in the clinic. Thus, we conclude that cases with
a hereditary or familial background can be treated with newer and more effective agents that may
ultimately improve their overall survival.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) presents many challenges in the clinic and there
are many areas for improvement in diagnostics and patient management. The five-year survival
rate is around 7.2% as the majority of patients present with advanced disease at diagnosis that
is treatment resistant. Approximately 10–15% of PDAC cases have a hereditary basis or Familial
Pancreatic Cancer (FPC). Here we demonstrate the use of circulating free DNA (cfDNA) in plasma
as a prognostic biomarker in PDAC. The levels of cfDNA correlated with disease status, disease
stage, and overall survival. Furthermore, we show for the first time via BEAMing that the majority
of hereditary or familial PDAC cases (around 84%) are negative for a KRAS somatic mutation. In
addition, KRAS mutation negative cases harbor somatic mutations in potentially druggable genes
such as KIT, PDGFR, MET, BRAF, and PIK3CA that could be exploited in the clinic. Finally, familial or
hereditary cases have a longer overall survival compared to sporadic cases (10.2 vs. 21.7 months,
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respectively). Currently, all patients are treated the same in the clinic with cytotoxic agents, although
here we demonstrate that there are different subtypes of tumors at the genetic level that could pave
the way to personalized treatment.

Keywords: liquid biopsy; cfDNA; hereditary and familial pancreatic cancer; somatic mutation
profiling; potentially druggable genes

1. Introduction

The incidence and mortality rates of adenocarcinoma of the pancreas (PDAC) are
almost equal [1]. Today, PDAC is the third leading cause of cancer death in the EU and by
2030 it is projected to be the second leading cause of cancer-related death [2], surpassing
breast, prostate, and colorectal cancer. The overall survival at 5 years is around 7.2% due to
the fact that the majority of patients present with advanced and treatment resistant disease
at diagnosis. KRAS somatic mutations are present in around 90% of sporadic tumors and
TP53, CDKN2A, and SMAD4 mutations are also commonly found. However, none of these
somatic changes are druggable at present time. In fact, PDAC tumors have an average
of 63 somatic alterations that affect different signaling pathways [3]. The best described
common risk factors for sporadic PDAC include tobacco, alcohol, diabetes, chronic pancre-
atitis, and obesity [4]. Family history is also an important risk factor and approximately
10% of PDAC cases have a hereditary or familial basis [5]. Hereditary pancreatic cancer
are associated with a known cancer syndrome such as hereditary breast–ovarian cancer
(HBOC), Peutz–Jeghers (PJ), Hereditary Pancreatitis (HP), Familial Atypical Multiple Mole
Melanoma (FAMMM), and Lynch syndrome and harbor germline pathogenic mutations
in genes such as BRCA2, MLH1, and CDKN2A [6]. Whereas, Familial Pancreatic Cancer
(FPC) is defined as a family with at least one pair of affected first degree relatives with no
identified genetic basis and account for 4–10% of PDAC patients [7,8]. The Spanish famil-
ial pancreatic cancer registry (PANGENFAM) was established in 2009 with the principal
objective to characterize the phenotypic and genetic background of FPC [9].

Specific, sensitive and minimally invasive biomarkers are needed in order to accu-
rately diagnose PDAC at a potentially curable stage and aid in patient management during
treatment. CA19-9 is currently used in the clinic, although the sensitivity and specificity
for the diagnosis of symptomatic PDAC is 79–81% and 82–90%, respectively [10]. Sev-
eral potential biomarkers have been recently described such as a three-protein panel in
urine [11], Galectin-1 (Gal-1) in serum [12], thrombospondin-2 (THBS2) in plasma [13],
circulating tumor DNA (ctDNA) [14], and the IMMray™ PanCan-d 29 biomarker signature
in serum [15]. The term the “liquid biopsy” was coined in 2010 [16], and is defined as the
detection and analysis of molecules (e.g., protein, DNA, RNA), cells or extracellular vesicles
(e.g., exosomes) that originate from the primary tumor in blood and other body fluids,
such as saliva, cerebrospinal fluid, and feces. Since fresh tissue, in the form of biopsies,
is scarce and prohibitive for many PDAC patients, liquid biopsies represent an attractive
surrogate system to provide essential information regarding diagnosis, stage, etc. Likewise,
there is an important and inherent degree of heterogeneity in primary PDAC tumors and
associated metastatic lesions [17], which can only be studied in depth via liquid biopsies
due to the shortage of primary and metastatic tumor tissue. Thus, research to maximize the
potential information that a liquid biopsy can offer has exploded in the past decade. cfDNA,
which consists of double-stranded DNA molecules of 70 to 200 bp [18,19], is released into
the blood stream by apoptotic or necrotic cells or in extracellular vesicles such as exosomes.
cfDNA is present in all individuals, although levels up 40 times higher are detected in
patients with tumors or inflammatory disease [20]. In fact, cfDNA detection has been used
previously as a prognostic and predictive marker in pancreatic cancer [21,22].
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This study aimed to analyze the use of cfDNA as a prognostic and predictive marker
in PDAC. Furthermore, the somatic mutation profile of Familial or Hereditary PDAC
(H/FPC) and sporadic PDAC cases was also analyzed.

2. Materials and Methods
2.1. Identification and Classification of Patients

The study was approved by the local ethics committee and all patients signed the
associated informed consent. PDAC patients were identified in the medical oncology
and general surgery departments of the Ramon y Cajal University Hospital in Madrid,
Spain. Cases that complied with the inclusion criteria of the Spanish Familial Pancreatic
cancer registry (PANGENFAM) were classified as Hereditary or FPC (H/FPC cohort) [9]
and included cases with and without a known genetic cause. Cases with no reported
hereditary or familial pancreatic cancer syndrome were classified as sporadic cases (SP
cohort). High-risk family members of H/FPC cases in the secondary screening program
that were diagnosed with pancreatic cysts or intraductal papillary mucinous neoplasm
(IPMN) were also included and one case that was initially included in the study as a
possible PDAC, but was later confirmed as an IPMN (pancreatic cysts cohort). Blood
samples in EDTA tubes were taken on entry into the study and plasma was extracted and
stored until cfDNA extraction and somatic mutation analysis. All clinical and personal
data was stored in a secure database Research Electronic Data Capture (REDCap: https:
//www.project-redcap.org/).

2.2. Isolation of cfDNA from Plasma

A total of two different methods of cfDNA isolation were compared to determine the
most appropriate method for PCR and sequencing based analysis of cfDNA, the Maxwell®

RSC Instrument and the QIAamp circulating nucleic acid kit (Qiagen, Venlo, Netherlands).
DNA was extracted from 1 mL of plasma using the Maxwell® RSC Instrument (Promega,
Madison, WI, USA) and eluted in a final volume of 50 µL from 136 patients diagnosed with
PDAC and 29 individuals diagnosed with pancreatic cysts and IPMN. Plasma samples
were also obtained from 40 healthy individuals with no known history of digestive disease
or cancer, provided by the BioBank Hospital Ramón y Cajal-IRYCIS (PT13/0010/0002), in-
tegrated in the Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678,
Spain). cfDNA was isolated as 10 plasma pools that consisted of 4 individuals in each. The
concentration of cfDNA was determined in all samples using the QuantiFluor® dsDNA
System (Promega, Madison, WI, USA) kit and analyzed using the Quantus Fluorometer
(Promega, Madison, WI, USA).

2.3. Detection of Mutant KRAS in Plasma by BEAMing

The presence of a mutation in KRAS codons 12, 13, 59, 61, 117, and 146 was determined
in cfDNA isolated using the Maxwell® RSC system and the OncoBEAM KRAS CRC kit
(Sysmex Inostics, Hamburg, Germany) using the BEAMing technology (Sysmex Inostics,
Hamburg, Germany) according to the manufacturer’s instructions, which also includes
positive and negative assay controls.

2.4. Sequencing of cfDNA Using the TruSight15 System (Illumina)

Cell free DNA was extracted from 1–3 mL of plasma using the QIAamp circulating
nucleic acid kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s instructions.
The DNA preparation obtained was purified using the Agentcourt AMPure XP Reagent
(Beckman Coulter, Brea, CA, USA) in two successive steps in order to isolate cfDNA of
approximately 160–170 bp. DNA was added to the Agentcourt AMPure XP Reagent at a
ratio of 0.7× and then at a ratio of 2× the initial volume of DNA. The sample was then
vortexed, centrifuged and incubated for 5 min at room temperature and then placed in a
magnetic rack and incubated for 5 min. The supernatant containing the cfDNA was placed
in a new Eppendorf and more Agentcourt AMPure XP Reagent was added for the second

https://www.project-redcap.org/
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round of purification. The same steps were repeated and the supernatant was finally
discarded. Then, 70% ethanol was added to the sample and then vortexed, centrifuged, and
placed in the magnetic rack for 30 s. The supernatant was removed and the sample was
washed with 70% ethanol in order to obtain a dry pellet. Finally, nuclease free water was
added and the sample was vortexed, centrifuged, incubated at room temperature for 2 min
and then incubated in the magnetic rack for 2 min. The purified cfDNA was analyzed with
the Tape Station 2200 using the HS D1000 kit (Agilent Technologies, Santa Clara, CA, USA)
to confirm the presence of a single band of approximately 160 bp. After quantification
using the Qubit fluorimeter 2.0 (ThermoFisher Scientific, Waltham, MA, USA) with the HS
DNA, the cfDNA was diluted to 2 ng/µL to prepare genome libraries using the TruSight
Tumor 15 kit (Illumina, San Diego, CA, USA), which is optimized for low DNA input.

The sequencing panel included the genes AKT1, BRAF, EGFR, ERBB2, FOXL2, GNA11,
GNAQ, KIT, KRAS, MET, NRAS, PDGFRA, PIK3CA, RET, and TP53. In total, 27 PDAC cases
(20 H/FPC cases and 7 sporadic cases) were included in the panel sequencing analysis
of cfDNA, and five of these samples were performed in duplicate. Then, two healthy
individuals, one case of previous breast cancer and one previous pancreatic neuroendocrine
tumor case, were also included in the study as control samples.

2.5. Identification of Pathogenic Somatic Variants

The BaseSpace Variant Interpreter (https://variantinterpreter.informatics.illumina.
com/home, last accessed date: 1 July 2020) from Illumina was used for the identification of
pathogenic somatic variants, which was specifically designed to analyze the sequencing
data generated using the TruSight 15 kit. A detailed description of the analysis pipeline
is shown in Data S1. Briefly, the variant call files (vcf) were uploaded and the “Small
Variant Consequences” filter was applied that included stop gain, stop loss, splice site,
missense, frameshift, deletions, insertions, and initiator codon (ATG) loss. Those variants
with a deleterious, probably or possibly damaging consequence according to the SIFT
and PolyPhen parameters were retained. The frequency of somatic variants was analyzed
using the Catalogue of Somatic Mutations in Cancer public database (COSMIC: (https:
//cancer.sanger.ac.uk/cosmic, last accessed date: 1 July 2020). Samples that did not reach
an average minimum amplicon coverage of 500 were excluded, and variants that passed
the quality filters of genotype quality, variant frequency, and strand bias were retained.

2.6. Statistical Analysis

The R program 3.4.3 was used for statistical analysis. The Mann–Whitney test was
used to analyze the differences in concentration of cfDNA between the different groups,
according to disease status and stage. The Chi square test was used to study the differences
in the frequency of somatic mutations in the different groups. A One-Way ANOVA test
was used to determine the differences in age at diagnosis and the Fishers exact test was
used to analyze the differences between sex and disease stage distributions in each group.

The “survival” package of R was used to perform survival analysis. Overall survival
(OS) was determined from the date of diagnosis until the date of death (event) or the date
of the last follow-up (censored). Patients were divided into 3 groups according to total
cfDNA concentration for survival analysis: high (≥3rd quartile), medium (≤3rd quartile
and ≥1st quartile), and low (≤1st quartile). The Kaplan Meyer and Log Rank test were
used to analyze overall survival among different subgroups of patient according to cfDNA
levels and classification as sporadic or H/FPC cases. The analysis was adjusted for age
and disease stage at diagnosis, sex and 1st line treatment and the corresponding hazard
ratios were calculated.

3. Results
3.1. Patient Characteristics

In total, 184 individuals were recruited in the entire study, including 145 cases (102 spo-
radic and 43 familial or hereditary PDAC cases), 29 patients with pancreatic cysts, and

https://variantinterpreter.informatics.illumina.com/home
https://variantinterpreter.informatics.illumina.com/home
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40 healthy controls. The demographic characteristics of the individuals included in the
study are summarized Table 1 and more detailed information of the clinical characteristics
of the different cohorts is provided in Table S1. The PDAC cohort included 71 males and
74 females with a median age of 69 years (29–90 years). The median age at diagnosis of
sporadic cases (SP) was 70 years and 65.5 years for Hereditary or Familial PDAC cases
(H/FPC), the difference was statistically significant according to the one-way ANOVA
test (p = 0.000113). The Male:Female ratio for sporadic cases was 0.89 and 0.65 and this
difference was not statistically significant according to the Fishers exact test. The pancreatic
cyst cohort consisted of 10 males and 19 females with a median age of 53 (37–81 years) and
four patients in this cohort finally underwent a surgical resection of the pancreatic lesion
due to a suspicion of malignancy (Table S1). The 40 healthy individual cohort consisted
of 17 females and 23 males with a median age of 39 years (18–63 years) and no known
digestive diseases.

Table 1. Age and sex distribution of the individuals included in the study, according to the different groups analyzed
pancreatic ductal adenocarcinoma (PDAC) cases (familial or hereditary (H/FPC) and Sporadic PDAC), pancreatic cysts and
healthy controls).

Variable All PDAC Cases Hereditary or Familial
PDAC Sporadic Pancreatic Cysts Healthy Controls

Male 71 17 54 10 23
Female 74 26 58 19 17

Ratio M:F 0.96 0.65 0.89 0.53 1.35
Median age (range) 69 (29–90) 65.5 (29–84) 70 (31–90) 53 (37–81) 39 (18–63)

A total of 136 PDAC patients (94 sporadic and 42 H/FPC) were included in the
cfDNA quantification analysis, 54 in the KRAS detection analysis in cfDNA via BEAMing
(23 sporadic and 31 H/FPC) and 20 H/FPC cases and 7 sporadic cases were included in
the panel sequencing analysis of cfDNA. There were no significant differences between the
age, sex, and disease stage at diagnosis distribution of the cohorts used for BEAMing and
sequencing analysis compared with the entire cohort.

3.2. Correlation of cfDNA Levels with Clinical Parameters

The Maxwell® RSC kit favors the isolation of small DNA fragments within the ex-
pected cfDNA size range of 150 to 200 bp with a low contamination of high-molecular
weight genomic DNA (Figure S1). Thus, this method was used for the study of total cfDNA
analysis in 1 mL of plasma and also for the BEAMing-based studies to avoid the amplifica-
tion of non-tumor genomic DNA. The total cfDNA concentration in plasma (ng/µL) was
determined for 136 patients with PDAC, 29 with pancreatic cysts and 40 healthy individu-
als (Figure 1a). The median cfDNA level in healthy individuals was 0.01 ng (0.005–0.09),
0.03 ng (0.005–0.7) in patients with pancreatic cysts, 0.0575 ng (0.01–4.17) in H/FPC PDAC
cases, and 0.07 ng (0.005–2.055) in sporadic PDAC cases. There were significantly higher
levels of cfDNA in patients with pancreatic cysts (p = 0.021), sporadic PDAC (p ≤ 0.001)
and H/FPC PDAC (p ≤ 0.001) compared to healthy individuals. Furthermore, there was
significantly higher levels of cfDNA levels in both H/FPC PDAC (p = 0.02314) and sporadic
PDAC cases (p = 0.01374) compared to patients with pancreatic cysts. The median cfDNA
concentration in all PDAC cases was 0.0675 ng (0.005–4.17) and there was no significant
difference in cfDNA levels between H/FPC PDAC and sporadic PDAC; 0.0575 vs. 0.07 ng,
respectively. The median cfDNA level in resectable cases was 0.0575 ng (0.0050–2.0000),
0.0675 ng (0.0350–2.0000) in locally advanced, and 0.07 ng (0.005–4.000) in metastatic cases
(Figure S2a). Even though the median cfDNA level increased according to disease stage,
the difference did not reach statistical significance. However, the levels of cfDNA were sig-
nificantly higher in resectable cases (p ≤ 0.001), locally advanced (p ≤ 0.001), and metastatic
cases (p ≤ 0.001) compared to healthy controls. Furthermore, the cfDNA levels were also
significantly higher in locally advanced (p = 0.02) and metastatic cases (p = 0.02) compared
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to patients with pancreatic cysts. There was no significant association between cfDNA
levels and tumor size according to the Pearson Correlation (−0.1).

1 
 

 

 

Figure 1. Correlation of circulating free DNA (cfDNA) levels with clinical characteristics. (a) The concentration of circulating
free DNA (cfDNA) in plasma differentiates between cancer and non-cancer cases. There were significantly higher levels of
total cfDNA in hereditary or familial and sporadic pancreatic ductal adenocarcinoma (PDAC) cases compared to healthy
controls and patients with pancreatic cysts. ** p ≤ 0.01; * p ≤ 0.05. (b) High levels of cfDNA at diagnosis correlate with a
poorer overall survival (OS). Patients were classified into 3 groups: high (>0.2037 ng), medium (≥0.035 ng and ≤0.2037),
and low (<0.035 ng) cfDNA levels. Follow-up was censored at 5 years and adjusted for sex, age, and disease stage at
diagnosis, sporadic or hereditary and familial, case and first line treatment. Low: N = 33; Medium N = 67 and High: N = 31.

Survival and cfDNA total concentration data were available for 134 PDAC cases. Cases
were followed up for a median of 12 months (0.4–60 months) and survival analysis was
performed based on total cfDNA levels and censored at 5 years. Patients were classified
into 3 groups: high (>0.2037 ng), medium (>0.035 ng and <0.2037 ng), and low (<0.035 ng)
cfDNA levels at diagnosis. The concentration of cfDNA in plasma significantly correlated
with overall survival (OS) and patients with a high cfDNA concentration at diagnosis
(>0.2037 ng) had a significantly shorter OS, with a median overall survival of 8.2 vs. 11.4
and 15.8 months for medium and low levels, respectively (Figure 1b). The Hazard Ratios
for a low cfDNA level at diagnosis was 0.6 (p = 0.04), 0.5 for a medium level (p = 0.01) and
1.8 (p = 0.04) for a high level (Table S2). Furthermore, cfDNA levels were determined in
plasma before and 1 month after a surgical resection of the primary tumor. There was a
significant reduction in the cfDNA concentration from 0.11 ng (0.025–5.5 ng) before surgery
to 0.025 ng (0.01–1.25 ng) after surgery (p = 0.0024) (Figure S2b), which supports the idea
that cfDNA levels are indicative of tumor burden.

3.3. Analysis of Somatic Mutations in Plasma

BEAMing was performed with cfDNA isolated from 1 mL of plasma using the
Maxwell® RSC kit from 54 PDAC cases, which included 31 H/FPC cases and 23 spo-
radic cases. The frequency of KRAS mutations in codon 12 and 13 was 70% in sporadic
cases and 16% in familial cases (Figure 2a,b), which was statistically significant (p ≤ 0.001),
and indicated that KRAS somatic mutations are less frequent in H/FPC cases compared to
sporadic cases. According to disease stage, KRAS positivity in sporadic and H/FPC cases
was 67 vs. 17% for locally advanced cases and 75 vs. 17% in metastatic cases, respectively,
which was statistically significant (p ≤ 0.001). The same statistical analysis could not
performed for the resectable cases due to the low number of cases in each in sub-group.
KRAS mutation validation in primary tissue was only possible in 8 out of 54 (15%) samples
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due to problems associated with primary tissue availability and a high non-neoplastic cell
content of primary tumors.
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Figure 2. KRAS mutation status was determined in plasma from (a) sporadic PDAC cases (b) hereditary or familial PDAC
(H/FPC) cases via BEAMing and mutant KRAS was more frequently detected in sporadic cases compared to H/FPC
cases. BEAMing was performed using cfDNA isolated from 1 mL of plasma from 54 PDAC cases (31 familial cases and
23 sporadic cases). The frequency of mutant KRAS was 70% in sporadic cases and 16% in familial cases, which was
statistically significant (p ≤ 0.001)).

The overall DNA yield with the QIAamp circulating nucleic acid kit was higher
compared to the Maxwell® RSC kit (Figure S1), although there was a higher level of
genomic DNA contamination. Thus, this method was used for subsequent sequencing
analyses after re-purification of fragments within the expected range of cfDNA (250 bp).
Panel sequencing of 15 genes commonly mutated in primary tumors was performed
in order to determine the spectrum of somatic mutations (other than KRAS) in H/FPC
cases. A total of 3 out of 21 (15%) of H/FPC cases were positive for a KRAS mutation (p.
Gly12Arg) (Figure 3) and BEAMing data were available for 17 of these cases. The KRAS
status via BEAMing and sequencing was consistent in 16 cases (3 KRAS positive and 14
KRAS negative) and a KRAS mutation was detected by BEAMing and not by sequencing in
one case. This is likely due to the lower sensitivity of sequencing for mutation detection
compared to BEAMing. The overall frequency of TP53 mutations in H/FPC cases was
12 out of 21 (57%). Furthermore, mutations in AKT, ERBB2, KIT, and PDGFRA were also
detected in KRAS negative H/FPC cases (Figure 3 and Table 2). Sequencing and BEAMing
data were available for 7 sporadic cases. The presence of a KRAS mutation was confirmed
by sequencing in 3 of 4 sporadic cases, again this is likely due to the lower sensitivity of
sequencing analysis. Of the 3 KRAS negative cases determined by BEAMing, one was
negative for mutations via sequencing, one harbored mutations in PDGFRA and TP53,
and the other case had mutations in PIK3CA, KIT, BRAF and ERBB2 (Table 2). The KRAS
mutation frequency in these 7 sporadic cases was 43%. However, it is important to note
that as 3 cases were specifically selected as they were negative for a KRAS mutation via
BEAMing and 4 KRAS positive cases were included for comparison. Thus, there is a
selection bias that is reflected in the KRAS mutation frequency.
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Figure 3. The frequency of somatic mutations in hereditary or familial cases and sporadic was
determined by sequencing analysis.

Table 2. Summary of the somatic mutations detected in H/FPC and sporadic cases by sequencing analysis.

Case Somatic Mutations Detected by Sequencing KRAS Status by BEAMing

H/FPC

KIT: p.(Glu640Lys) and TP53: p.(His214Tyr) and ERBB2: p.(Asn850Ser) md
KRAS: p.(Gly12Arg) and TP53: p.(His193Arg) md

KRAS: p.(Gly12Asp) md
KRAS:p.(Gly12Asp) and TP53:p.(Tyr220Cys) and ERBB2:p.(Asn850Ser) md
AKT: p.(Lys39Asn) and TP53: p.(Pro250His) and ERBB2: p.(Arg849Gln) nmd

ERBB2: p.(Ala710Val) nmd
ERBB2: p.(Cys560Phe) and AKT: p.(Thr34Asn) and TP53: p.(Pro250His) nmd

PDGFRA: p.(Ala840Thr) and AKT: p.(Thr34Asn) and TP53:p.(Pro250His) nmd
TP53 p.(Ser215Ile) and PDGFRA p.(Ala840Val) and KIT p.(Tyr545Phe) nmd

TP53: p.(Glu171Gly) and AKT: p.(Thr34Asn) nmd
TP53: p.(His214Tyr) nmd
TP53: p.(His214Tyr) nmd

TP53:p.(His214Tyr) and ERBB2:p.(Tyr735Cys) nmd
TP53:p.(His214Tyr) and KIT:p.(Glu640Lys) and ERBB2:p.(Tyr735Cys) and

ERBB2:p.(Asn850Ser) nmd

NEG nmd
NEG nmd
NEG nmd
NEG nmd

ERBB2:p.(Leu715Arg) and AKT:p.(Pro24Ser) not tested
NEG not tested
NEG not tested

Sporadic

KRAS: p.(Gly12Asp) and TP53: p.(Gly266Val) md
KRAS p.(Gly12Asp) and TP53 p.(Gly266Val) md

KRAS: p.(Gly12Asp) and TP53: p.(Gly244Ser) and AKT: p.(Arg23Trp) and
ERBB2: p.(Gly732Asp) md

TP53: p.(Pro177Arg) and ERBB2: p.(Pro1130His) md
PDGFRA p.(Ala820Val) and TP53 p.(Pro223Ser) nmd

PIK3CA: p.(Ala995Asp) and KIT: p.(Pro832Ser) and BRAF:p.(His585Tyr) and
ERBB2: p.(Pro761Thr) nmd

NEG nmd

NEG: negative for somatic mutations by sequencing analysis. md: KRAS mutation detected by BEAMing. nmd: no KRAS mutation
detected by BEAMing.



Cancers 2021, 13, 1612 9 of 15

Overall, 20 H/FPC and 7 sporadic cases were analyzed by sequencing analysis. Then,
3 out of 21 (14%) of H/FPC were positive for a KRAS mutation. All KRAS mutations were
Gly12Asp. One case only had a KRAS mutation, another KRAS and TP53 (His193Arg), and
another KRAS, TP53 (Tyr220Cys), and ERBB2 (Asn850Ser). Of the 3 sporadic cases negative
for a KRAS mutation via BEAMing, one had a mutation in TP53 and PDGFR, another in
PIK3CA, KIT, BRAF, and ERBB2, and the final case was mutation negative via sequencing.

According to the COSMIC database, KRAS and TP53 are the most commonly mutated
genes in PDAC, 64 and 47%, respectively. The KRAS mutations identified were known
pathogenic mutations that have been previously described in COSMIC. The most frequent
KRAS mutations found by sequencing were c.35G>A G12D and c.34G>C G12R, which are
among the most frequent mutations reported in COSMIC (G12D (47%), G12V (31%), and
G12R (13%)). The TP53 variant p.(His214Tyr) was identified in 5 H/FPC cases and had a
high pathogenicity score (FATHMM prediction (Pathogenic (score 1.00)) but was not found
in COSMIC [23].

Survival analysis was performed with hereditary or familial (H/FPC) cases and
sporadic cases, which was corrected for sex, age, and stage at diagnosis and 1st line therapy.
Hereditary or familial cases had a significantly longer median overall survival compared
to sporadic cases; 10.2 vs. 21.7 months, respectively, (p ≤ 0.001) (Figure 4). The Hazard
Ratio for sporadic cases was 2.4 (p ≤ 0.001) (Table S2), indicating that sporadic cases have a
poorer overall survival, independently of stage at diagnosis and 1st line treatment.

1 
 

 

 

Figure 4. Hereditary or familial PDAC cases have a longer overall survival (OS) compared to
sporadic cases.

Follow-up was censored at 5 years, adjusted for sex, age and disease stage at diagnosis,
and first line treatment. The median OS for H/FPC cases was 21.47 months (0.37–60) and
10.4 months (0.57–60) for sporadic cases, which was statistically significant. The HR for
sporadic cases was 2.4. Sporadic PDAC: N = 102 and H/FPC: N = 35.
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4. Discussion

Circulating-free DNA concentration in plasma or serum has been shown to be a
surrogate marker of tumor burden, survival, and recurrence in various tumor types, such
as lymphoma [24], lung [25,26], prostate [27] melanoma [28], and colon [29,30]. In this
study, the levels of cfDNA correlated with disease status, with higher levels found in PDAC
cases vs. healthy individuals or patients with pancreatic cysts. There was a reduction in
the total cfDNA levels after resection of the primary tumor, which also supports the notion
that cfDNA levels may be indicative of tumor burden. Furthermore, PDAC cases with a
cfDNA high concentration at diagnosis had a significantly poorer OS compared to cases
with low and medium levels. The lack of primary PDAC tissue of sufficient quality and
quantity is a significant problem due to the low resection rate and contamination with the
stroma cells, among other reasons. Thus, the liquid biopsy is the most feasible approach for
molecular studies in PDAC and we show here that molecular analysis in cfDNA is a good
substitute for primary tissue. We attempted to validate KRAS mutations in primary tissue
but were successful in only 15% of cases, which is a recurring problem in many PDAC
somatic profiling studies [31,32].

Mutant KRAS was more frequently detected in cfDNA from sporadic cases compared
to hereditary or familial cases (70 vs. 16%, respectively). This is the first time that a
difference in KRAS mutation status frequency has been shown between sporadic and
hereditary or familial cases. Previous studies have reported that the frequency of KRAS
mutations is similar between familial and sporadic cases [33,34]. However, as they reply
on primary tumor samples, they have some limitations, such as sample size and case
selection bias. One study reported a similar frequency of KRAS, TP53, CDKN2A, and
SMAD4 mutations in sporadic and familial cases [33]. However, this study only included
primary tumor-derived cell lines from 16 patients, thus there is an important sample size
limitation. A second study included 39 cases and also showed a similar somatic profile
between somatic and familial cases [34]. However, this study excluded cases with a known
pathogenic germline mutation that predisposes them to develop PDAC. Thus, there is an
important selection bias, as the cases that we hypothesize will lack KRAS somatic mutations
in the primary tumor were excluded. Thus, these data cannot be directly compared with
the data presented here.

Although it could be expected that the majority of sporadic cases would be positive for
KRAS mutation, we did not detect a KRAS mutation in all cases. This may be due to the low
cfDNA yield which appears to be dependent on disease stage. Furthermore, some patients
may not actively shed cfDNA into the blood stream and, therefore, it is almost impossible
to detect tumor cfDNA in these individuals. However, there was no statistically significant
difference in the median cfDNA levels between sporadic and hereditary or familial cases
that may account for this difference in KRAS detection frequency. Thus, suggesting that
the somatic KRAS mutation frequency differs between sporadic and hereditary for familial
cases. Furthermore, the KRAS positivity rate in the sporadic cases is consistent with
previous studies based on cfDNA that report values of 70 and 62.8%. Importantly, we show
for the first time that hereditary or familial cases have a longer OS survival compared to
sporadic cases, even though they are treated the same regimens in the clinic. Furthermore,
hereditary or familial cases were diagnosed at a significantly younger age compared
with sporadic cases, 70 vs. 65.5 years, respectively. However, since the survival analysis
was corrected for age and disease stage at diagnosis and 1st line adjuvant treatment, the
difference in survival may be due to a distinct molecular somatic profile of H/FPC cases
compared to sporadic cases.

The Maxwell system was used for BEAMing analysis as the magnetic beads-based
approach has been shown to be superior to silica membrane-based methods such as the
QIAamp kit [35]. In fact, we showed that Maxwell system favored the extraction of small
sized fragments which correspond to cfDNA, with less genomic DNA contamination. Thus,
we believe that this method is more appropriate for PCR based methods, such as BEAMing
to avoid the amplification of high molecular weight genomic DNA from normal cells. The



Cancers 2021, 13, 1612 11 of 15

QIAamp Kit produces the highest yield of total cfDNA compared to other commercially
available kits and was therefore used for sequencing analysis [36], which is at least 10 fold
less sensitive than BEAMing. The probability of finding a low number of cfDNA molecules
follows the Poisson distribution and therefore this probability increases with increased
sample volume. A minimum of 3.6 ng of cfDNA is needed to obtain a sensitivity of <0.1%
and 36 ng are needed to obtain a sensitivity of <0.01% [35]. Therefore, the sensitivity to
detect somatic mutations by sequencing analysis is much lower compared to BEAMing.

There are some important limitations with regard to the use of cfDNA as a prog-
nostic marker that should be taken into account. Some reports have shown that cfDNA
isolated from serum has a higher integrity than in plasma, although the KRAS allelic
frequencies were much lower in serum compared to plasma, with a similar sensitivity and
specificity [36]. The critical factors that influence the quality and yield of cfDNA are the
time from sample extraction to processing and sample collection tube type and a second
centrifugation is required to remove lysed white blood cells [36]. Plasma contains many
PCR inhibitors such as heparin, hemoglobin, hormones, immunoglobulin G, and lactofer-
rin [37], which may be overcome for PCR applications by diluting the sample. Although,
sequencing technologies are particularly sensitive to inhibitors and, thus, high quality and
quantity samples are needed. Clonal hematopoiesis of indeterminate potential (CHIP)
can interfere with cfDNA testing results and the parallel analysis of a paired whole blood
control to exclude CHIP variants and avoid misdiagnosis has been recommended [38].

In Europe, PDAC patients are all similarly treated in the clinic. Even though it is
clear that there are several PDAC sub-types at the genetic and histological level that differ
in terms of prognosis and response to therapy [39]. The backbone of chemotherapy in
PDAC are cytotoxic agents that target rapidly proliferating cancer cells. These include
the FOLFIRINOX scheme (folinic acid, fluorouracil, irinotecan, and oxaliplatin), gemc-
itabine combined with nab-paclitaxel, capecitabine and gemcitabine or 5FU monotherapy
according to disease stage and Eastern Cooperative Oncology Group (ECOG) status [40].
However, PDAC cases with germline and somatic mutations in DNA repair genes (BRCA1,
BRCA2, PALB2, ATM, BAP1, BARD1, BLM, BRIP1, CHEK2, FAM175A, FANCA, FANCC,
NBN, RAD50, RAD51, RAD51C), are more sensitive to platinum agents in first line and
PARP inhibitors (e.g., olaparib and rucaparib) as a maintenance treatment [41,42]. Clinical
guidelines recommend PDAC gene profiling and The National Comprehensive Cancer
Network (NCCN) guidelines suggest clinical trial participation as first line and second line
treatment options [40]. As treatment modifies the genomic composition of PDAC, cfDNA
is a useful tool to identify resistance mutations, and potential new treatment targets [43].

Low prevalence focal amplifications in druggable oncogenes have been identified
in PDAC such as ERBB2, MET, FGFR1, CDK6, PIK3R3, and PIK3CA, which may also be
exploited in the clinic to provide alternatives to cytotoxic therapies [44]. We hypothesized
that hereditary or familial PDAC cases have a distant somatic mutation spectrum due to
the presence of germline pathogenic mutations in DNA repair genes. We found somatic
mutations in the genes KIT, AKT, PDGFRA, MET, PIK3CA and BRAF in KRAS negative
cases, which were mainly found in hereditary and familial cases. Thus, this subgroup of
patients could be candidates for treatment with small molecule tyrosine kinase inhibitors
(TKI) that inhibit KIT and PDGFR (e.g., axitinib and imatinib), new generation isoform-
specific PI3K inhibitors that reduce toxicity (e.g., alpelisib), small molecule inhibitors and
monoclonal antibodies against the receptor and ligands of MET, BRAF, and EGFR, among
others. However, the efficacy of these treatment strategies must be confirmed in pre-clinical
or clinical studies in this sub-group of patients.

We show here for the first time that hereditary or familial cases have a lower KRAS
mutation frequency compared to sporadic cases. Although the data presented here are
preliminary and should be validated in a larger cohort of patients, the observation of
KRAS negativity in hereditary and familial cases could have an important impact in
the clinic for this patient subgroup. In addition, KRAS negative cases harbored somatic
mutations in potentially druggable genes that could potentially be exploited in the clinic.
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Furthermore, they have a longer overall survival, which does not appear to be related to
stage at diagnosis or 1st line treatment strategy. The main limitation of this study is the
sample size. Hereditary or familial PDAC is not a common entity and thus this factor
limited the number of cases that were included. Moreover, only 54 samples were included
in the BEAMing analysis and 27 in the sequencing analysis due to economic constraints and
8 cases in primary tissue validation due to sample availability. However, there are some
positive aspects of this study that should be highlighted. Firstly, as liquid biopsy samples
were used, were able to include localized and advanced PDAC cases in the study, which
provides a more representative patient cohort. Secondly, we show that the liquid biopsy
is a valid alternative in many PDAC cases to primary tissue samples, due to the advent
of new technologies with a high sensitivity and specificity for somatic mutation detection.
Finally, this study provides preliminary data to suggest that Hereditary or Familial PDAC
have a distinct somatic mutation profile compared to sporadic cases and this should be
taken into account in the clinic when defining a treatment strategy.

5. Conclusions

cfDNA is a valuable source of genomic information in PDAC cases where primary
tissue samples are scarce and is also useful to track the genomic changes induced by
treatment and tumor dynamics, for the design of a more personalized treatment. The level
of cfDNA in plasma appears to be a prognostic indicator, independently of the detection
of tumor specific mutations and appears to be a valid substitute for primary tumor tissue
for molecular studies in PDAC. Hereditary or familial and tend to be KRAS negative and
harbor somatic mutations in TP53 in combination with potentially druggable mutations in
genes such as KIT, AKT, BRAF, PIK3CA, and PDGFR. However, these preliminary findings
must be validated in a larger cohort. Hereditary or familial PDAC cases have a greater
overall survival rate, even though they are treated with the same regimens in the clinic as
sporadic cases.
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