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Altered machinery of protein synthesis
is region- and stage-dependent and is
associated with α-synuclein oligomers in
Parkinson’s disease
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Abstract

Introduction: Parkinson’s disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected
regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by
globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of
Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8,
angular gyrus, precuneus and putamen.

Results: Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3
(NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein
immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs
encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor
eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many
of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors
indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1
mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and
region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex
area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease
eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the
putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6.
These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral
cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted
with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but
not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell
sorter (FACS)-isolated nuclei in the frontal cortex in PD.
(Continued on next page)
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(Continued from previous page)

Conclusions: Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD
being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of
protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein
oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band
patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.
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Introduction
Neurodegenerative diseases with abnormal protein ag-
gregates are characterized by post-translational modifi-
cations of constitutive proteins which result in abnormal
conformation, truncation, and eventual formation of
fibrils that impair endoplasmic reticulum function and
alter the ubiquitin-proteasome system and autophagy
pathways, thereby leading to their accumulation in neu-
rons and, in some conditions, in glial cells. Alzheimer’s
disease (AD), Parkinson’s disease (PD), tauopathies,
amyotrophic lateral sclerosis, and Huntington’s disease
are among this extensive group of disorders in which
specific intra- and extracellular protein aggregates,
together with the production and accumulation of ab-
normal oligomeric species, lead to neurodegeneration
and neuronal death. In spite of the advances in under-
standing of specific altered proteins causative of particu-
lar diseases, little attention has been paid to the process
of total protein synthesis in these disorders. This infor-
mation is nevertheless crucial, as possible alterations in
protein synthesis may jeopardize multiple cellular func-
tions, fuel neurodegeneration and neuron atrophy (i.e.
loss of dendrites, synapses and axons), and lead eventu-
ally to cell death.
Several studies have demonstrated ribosomal dysfunc-

tion and impaired protein synthesis in AD [1–5]. How-
ever, little information is available about alterations in
protein synthesis in PD. Abnormal morphology and dis-
ruption of the nucleolus and reduced nucleolin expres-
sion have been reported in the substantia nigra in PD
[6–8] and related experimental models [8, 9]. Mutations
in DJ1 causative of familial PD alter rRNA biogenesis
[10]. Added to this limited input is the fact that nothing
is known about the possible link between the machinery
of protein synthesis and α-synuclein aggregates, particu-
larly α-synuclein oligomers in PD.
For these reasons, the present study was designed to

identify possible alterations in concatenated pathways
commanding protein synthesis from the nucleolus to the
ribosome in regions with variable vulnerability to PD, in-
cluding the substantia nigra, frontal cortex area 8, angular
gyrus, precuneus, and putamen, at different stages of dis-
ease progression. The study includes analysis of selected

nucleolar proteins involved in rRNA synthesis, rRNA 18S
and rRNA 28S, and mRNAs of ribosomal proteins. This is
followed by analysis of protein expression of initiation
translation and elongation factors of protein synthesis at
the ribosome. Finally, whether alterations are associated
with α-synuclein oligomers was assessed in total hom-
ogenate fractions and in FACS-isolated nuclei analysed
with anti-α-synuclein oligomer-specific antibodies. Post-
mortem human brain is not suitable for direct studies of
protein synthesis using in vitro incorporation of labelled
amino acids in proteins because of unpredictable individ-
ual variations probably related to pre-mortem status and
post-mortem delay in tissue processing. For this reason,
the present study does not explore protein synthesis in
human PD samples but rather focuses directly on the vul-
nerability of molecules and pathways involved in protein
synthesis in several brain regions at different stages of dis-
ease progression in human PD.

Material and methods
Human cases
Brain tissue was obtained from the Institute of Neuro-
pathology HUB-ICO-IDIBELL Biobank and the Hospital
Clinic-IDIBAPS Biobank following the guidelines of the
Spanish legislation on this matter and the approval of the
local ethics committees. The post-mortem interval be-
tween death and tissue processing was between 3 and
20 h. Pathological cases were categorized as having PD
pathology (Lewy body disease pathology) stages 1 to 6
according to the nomenclature of Braak et al. [11].
Only typical cases according to the Braak classification
were included. Cases with concomitant tauopathies, ex-
cepting Alzheimer’s disease-related pathology stages I-
II/0-B [12], vascular disease, and metabolic syndrome
were excluded from the present study. Middle-aged
(MA) cases had not suffered from neurologic, psychi-
atric, or metabolic diseases (including metabolic syn-
drome), and did not have abnormalities in the
neuropathological examination excepting sporadic Alz-
heimer’s disease-related pathology stages I-II/0-B of
Braak and Braak.
In total, 122 brains including 44 MA and 78 cases with

PD-related pathology were included in the present study.
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Incidental PD (iPD or incidental Lewy Body Disease
iLBD) occurred in 13 cases (mostly stages 1, 2, and 3 of
Braak). Pre-parkinsonian symptoms in iPD cases were
not recorded. Regarding PD cases, all of them had been
treated for their motor symptoms. The disease duration
ranged from 6 to 16 years. The most common causes of
death in the MA and PD cases were infections, neopla-
sia, and acute cardiac disease.
Five regions were examined for mRNA expression:

frontal cortex area 8, substantia nigra, angular gyrus, pre-
cuneus, and putamen; the selection of these areas was
based on their differing vulnerability to PD and to their
accumulative involvement with disease progression. Num-
ber of cases, mean ages, and standard deviation for each
group are summarized in Table 1. A summary of individ-
ual cases and methods used for all cases examined is
shown in Additional file 1: Table S1. Most cases here
analysed were also the subject of other studies [13–15].

RNA purification
Purification of RNA from the substantia nigra, right
frontal cortex area 8, angular gyrus, precuneus, and puta-
men was carried out using RNeasy Lipid Tissue Mini Kit
(Qiagen, Hilden, Germany) following the protocol pro-
vided by the manufacturer and performing the optional
DNase I digest to avoid extraction and later amplification
of genomic DNA. The concentration of each sample was
obtained from A260 measurements with a NanoDrop
2000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA), and RNA integrity was tested using the Agi-
lent 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA).

Retrotranscription reaction
Retrotranscription reaction of RNA samples was carried
out with the High-Capacity cDNA Archive kit (Applied
Biosystems, Foster City, CA, USA) following the guidelines
provided by the manufacturer, and using a Gene Amp®
9700 PCR System thermocycler (Applied Biosystems).

A parallel reaction for one RNA sample was processed in
the absence of reverse transcriptase to rule out DNA
contamination.

Real Time PCR
RT-qPCR was conducted in duplicate on cDNA samples
obtained from the retrotranscription reaction using
1,000ηg of RNA, diluted 1:20 in 384-well optical plates
(Kisker Biotech, Steinfurt, Germany) utilizing the ABI
Prism 7900 HT Sequence Detection System (Applied
Biosystems). Parallel amplification reactions were carried
out using 20x TaqMan Gene Expression Assays and 2x
TaqMan Universal PCR Master Mix (Applied Biosystems).
TaqMan probes used in the study are shown in Additional
file 2: Table S2. The reactions were performed using the
following parameters: 50 °C for 2 min, 95 °C for 10 min,
40 cycles at 95 °C for 15 s, and 60 °C for 1 min. TaqMan
PCR data were captured using the Sequence Detection
Software (SDS version 2.2, Applied Biosystems). Subse-
quently, threshold cycle (CT) data for each sample were
analysed with the double delta CT (ΔΔCT) method. First,
delta CT (ΔCT) values were calculated as the normalized
CT values for each target gene in relation to the endogen-
ous controls β-glucuronidase (GUS-β) and X-
prolylaminopeptidase (aminopeptidase P) 1 (XPNPEP1)
for normalization [16, 17]. Second, ΔΔCT values were
obtained with the ΔCT of each sample minus the mean
ΔCT of the population of MA samples (calibrator sam-
ples). The fold-change was determined using the equation
2-ΔΔCT. These housekeeping genes were selected because
they show no modifications in several neurodegenerative
diseases in human post-mortem brain tissue [16, 17].
Similar results were obtained using GUS-β and XPNPEP1
as correctors; GUS-β was selected for representation.

Statistical analysis
The normality of distribution of the mean fold-change
values obtained by RT-qPCR for each region and stage

Table 1 Summary of the number of cases, mean ages, and standard deviation (SD) of each group of samples used in the present study
including substantia nigra, frontal cortex area 8, angular gyrus, precuneus, and putamen. MA: middle-aged; PD: Parkinson’s disease

substantia nigra frontal cortex angular gyrus precuneus putamen

Number (N) Number (N) Number (N) Number (N) Number (N)

mean age ± SD mean age ± SD mean age ± SD mean age ± SD mean age ± SD

MA N = 11 N = 16 N = 10 N = 11 N = 15

65.67 ± 12.76 63.88 ± 12.65 60.90 ± 10.28 64.64 ± 15.09 70.27 ± 8.89

PD stages 1-2 N = 6 N = 2 - - -

80.17 ± 9.20 73.50 ± 2.12

PD stages 3-4 N = 22 N = 17 N = 8 N = 10 N = 7

76.55 ± 6.93 70.12 ± 8.40 66.50 ± 6.52 76.80 ± 7.73 76.00 ± 13.10

PD stages 5-6 N = 17 N = 12 N = 4 N = 4 N = 2

78.82 ± 6.15 77.83 ± 4.51 79.25 ± 3.40 81.25 ± 3.86 78.00 ± 1.41
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between MA and PD cases were analysed with the
Kolmogorov-Smirnov test. The non-parametric Mann–
Whitney test was performed to compare each group
when the samples did not follow a normal distribu-
tion, while the unpaired t test was used for normal
variables. t test was used instead of one-way ANOVA
when analyzing MA and PD cases in parallel in the same
optical plate. Statistical analysis was performed with
GraphPad Prism version 5.01 (La Jolla, CA, USA) and
Statgraphics Statistical Analysis and Data Visualization
Software version 5.1 (Warrenton, VA, USA). Differences
between groups were considered statistically significant at
P-values: *P < 0.05, **P < 0.01 and ***P < 0.001.

Gel electrophoresis and western blotting
Samples of the substantia nigra including 14 MA and 14
PD cases of frontal cortex area 8 (0.1 g of tissue) were
homogenized with a glass homogenizer in Mila lysis
buffer (0.5 M Tris at pH 7.4 containing 0.5 methylene-
diaminetetracetic acid at pH 8.0, 5 M NaCl, 0.5 % Na
doxicholic, 0.5 % Nonidet P-40, 1 mM phenylmethylsul-
fonyl fluoride, bi-distilled water) with protease and phos-
phatase inhibitor cocktails (Roche Molecular Systems,
Pleasanton, CA, USA), and then centrifuged at 4 °C for
15 min at 13,000 rpm (ultracentrifuge Beckman with
70Ti rotor, CA, USA). Protein concentration was measured
by Smartspect™plus spectrophotometer (Bio-Rad, CA,
USA) using the Bradford method (Merck, Darmstadt,
Germany). Samples containing 20 μg of protein and the
standard Precision Plus Protein™ Dual Color (Bio-Rad) were
loaded onto 10 % and 12 % acrylamide gels. Proteins were
separated in sodium dodecylsulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) and electrophoretically transferred
to nitrocellulose membranes using the Trans-Blot®Turbo™
transfer system (Bio-Rad) at 200 mA/membrane for
20 min. Non-specific bindings were blocked by incubation
in 5 % albumin in Tris-buffered saline (TBS) containing
0.2 % Tween for 1 h at room temperature. After washing,
the membranes were incubated at 4 °C overnight with sev-
eral antibodies in TBS containing 5 % albumin and 0.2 %
Tween. A list of the antibodies used is shown in Additional
file 3: Table S3. Monoclonal antibody anti-β-actin diluted
1:30,000 (β-Actin, A5316; Sigma-Aldrich, St. Louis, MO,
USA) was blotted for the control of protein loading. After-
wards, the membranes were incubated for 1 h with the ap-
propriate HRP-conjugated secondary antibody (1:1,000,
Dako, Glostrup, Denmark), and the immune complexes
were visualized with a chemiluminescence reagent (ECL,
Amersham, GE Healthcare, Buckinghamshire, UK). Densi-
tometry of western blot bands was assessed with the Total-
Lab program (TotalLab Quant, Newcastle, UK) and
subsequently analysed with GraphPad Prism by one-way
ANOVA with post hoc Tukey’s student range test for
multiple comparisons. We used one-way ANOVA instead

of t test because each gel contained MA and different
stages of PD cases. Differences were considered statistically
significant with P-values: *P <0.05; **P <0.01; ***P <0.001.

Immunohistochemistry, double-labelling
immunofluorescence, and confocal microscopy
Immunohistochemical study of selected nucleolar pro-
teins was performed on 4 μm-thick dewaxed paraffin
sections of the substantia nigra. PD cases were analysed
including 2 stage 1 cases (1 male and 1 female), 3 stage
3 males, 2 stage 4 males, and 3 stage 5 males. Tissue
sections were boiled in citrate buffer for 20 min to
retrieve antigenicity. Endogenous peroxidases were
blocked with peroxidase (Dako, Glostrup, Denmark)
followed by 10 % normal goat serum. The primary anti-
bodies were mouse monoclonal anti-nucleophosmin
(NPM1) and rabbit polyclonal anti-nucleoplasmin-3
(NPM3). A few sections of the substantia nigra and
frontal cortex area 8 were incubated with anti-α-
synuclein oligomer-specific antibody (Agrisera, Vännäs,
Sweden) at a dilution of 1:1,000. Following incubation
with the primary antibody at room temperature over-
night, the sections were incubated with EnVision + sys-
tem peroxidase (Dako) at room temperature for 15 min.
The peroxidise reaction was visualized with diaminobenzi-
dine (DAB) and H2O2. The omission of the primary anti-
body in some sections was used as a control for the
immunostaining; no signal was obtained with the incuba-
tion only of the secondary antibody. No immunogenic
peptides were available for any antibody used. Sections
were slightly counterstained with haematoxylin.
Double-labelling immunofluorescence was carried out

on de-waxed sections, 4 μm-thick, which were stained
with a saturated solution of Sudan black B (Merck, DE)
for 15 min to block the autofluorescence of lipofuscin
granules present in cell bodies, and then rinsed in 70 %
ethanol and washed in distilled water. The sections were
boiled in citrate buffer to enhance antigenicity and
blocked for 30 min at room temperature with 10 %
foetal bovine serum diluted in PBS. Then, the sections
were incubated at 4 °C overnight with combinations of
primary antibodies. After washing, the sections were in-
cubated with Alexa488 or Alexa546 (1:400, Molecular
Probes, US) fluorescence secondary antibodies against
the corresponding host species. Nuclei were stained with
DRAQ5™ (1:2,000, Biostatus, UK). After washing, the
sections were mounted on Immuno-Fluore mounting
medium (ICN Biomedicals, US), sealed, and dried
overnight. Sections were examined with a Leica TCS-SL
confocal microscope. Again, omission of the primary
antibody in some sections was used as a control for the
immunostaining.
Quantitative studies were carried out in the substantia

nigra on serial non-consecutive sections stained with
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haematoxylin and eosin or processed for NPM1 and
NPM3 immunohistochemistry. Nucleolar counts were
performed directly under the ocular of the microscope at
a magnification x200 in three areas (0.48 mm2) selected at
random in every one of the eleven cases (2 PD1, 3 PD3, 3
PD4, 3 PD5). Results of NPM1 and NPM3-stained nucle-
oli per section were expressed as percentage of the total
nucleoli visualized in haematoxylin and eosin-stained.
Sections of PD at stage 1, stained with haematoxylin and
eosin, were used to quantify neurons in which the nucle-
olus was visualized in that section.
To learn whether reduced NPM1 immunoreactivity in

substantia nigra dopaminergic neurons was linked to α-
synuclein inclusions, double-labelling immunofluores-
cence and confocal microscopy using anti-NPM1 and
anti-α-synuclein antibodies was used to analyze six cases
(1 tissue section per case) of PD at stages 4–5.
Quantification of co-localization of α-synuclein and eIF3

in sections processed for double-labelling immunofluore-
scence and confocal microscopy was done by counting 31
α-synuclein immunoreactive neurons (n = 6 sections) from
PD stages 4 and 5, and noting how many of these neurons
contained eIF3 immunoreactive inclusions. Results of eIF3
co-localization were expressed as the percentage of neurons
with α-synuclein inclusions containing eIF3 deposits.

α-synuclein oligomeric species in total homogenate fractions
Brain samples (0.1 g) of substantia nigra pars compacta,
frontal cortex area 8 and putamen from MA (n = 3 per
group) and stage 5 PD cases (n = 3 per group) were ho-
mogenized in a glass homogenizer, in 750 μl of ice-cold
PBS+ (sodium phosphate buffer pH 7.0, plus protease
inhibitors), sonicated, and centrifuged at 2,700 g at 4 °C
for 10 min. The pellet was discarded and the resulting
supernatant was ultra-centrifuged at 133,000 g at 4 °C
for one hour. The supernatant (S2) was kept as the PBS-
soluble fraction. The resulting pellet was re-suspended
in a solution of PBS, pH 7.0, containing 0.5 % sodium
deoxycholate, 1 % Triton, and 0.1 % SDS, and this was
ultra-centrifuged at 133,000 g at 4 °C for one hour. The
resulting supernatant (S3) was kept as the deoxycholate-
soluble fraction. The corresponding pellet was re-
suspended in a solution of 2 % SDS in PBS and main-
tained at room temperature for 30 min. Afterwards, the
samples were centrifuged at 133,000 g at 25 °C for one
hour and the resulting supernatant (S4) was the SDS-
soluble fraction. Equal amounts of each fraction were
mixed with reducing sample buffer and processed in
parallel for 10 % SDS-PAGE electrophoresis and western
blotting. Membranes were incubated with anti-α-
synuclein oligomer-specific antibody (Agrisera, Vännäs,
Sweden) at a dilution of 1:1,000. The protein bands were
visualized with the ECL method (Amersham).

α-synuclein oligomeric species in isolated nuclei
Small pieces of frozen brain samples (0.2 g) of frontal
cortex area 8 from MA (n = 2, cases 4 and 15 of the
Additional file 1: Table S1) and 2 PD cases stages 5–6
(n = 2, cases 113 and 120 of the Additional file 1: Table
S1) were homogenized in a 6 ml ice-cold Solution D
buffer (0.25 M sucrose, 25 mM potassium chloride
(KCl), 5 mM magnesium chloride (MgCl2), and 20 mM
Tris–HCl pH 7.5) with 0.1 % Triton, and then centri-
fuged at 1,000 g for 10 minutes at 4 °C (Ultracentrifuge
Beckman with 70Ti rotor). The supernatant obtained
was discarded and the pellet was re-suspended in 2 ml
of Optiprep (D1556, Sigma, St Louis, MO, USA) to allow
better separation by density gradient, and centrifuged at
3,200 g for 20 minutes at 4 °C. The new supernatant
obtained was discarded again whereas the pellet was re-
suspended in 500 μl ice-cold PBS buffer. Isolated nuclei
were stained with mouse antibody to NeuN (see
Additional file 3: Table S3). Primary antibody was visual-
ized with appropriate secondary antibodies conjugated
with Alexa 488. DNA content was determined using
DAPI (4',6-diamidino-2-phenylindole). Subsequently,
samples were centrifuged at 1,000 g for 10 min at 4 °C,
and the solution obtained was re-suspended in 800 μl
ice-cold PBS buffer.
Flow cytometry sorting was performed with a Beckman

Coulter MoFlo Astrios. Nuclei were sorted at 25 PSI
(pounds per square inch) through a 100 micron nozzle.
Sample and collection tubes were kept at 10 °C for the
duration of the sorting. Afterwards, NeuN+ (neuronal
nuclei) and NeuN- (assumed glial nuclei) were collected
separately in Optiprep and centrifuged at 3,200 g for
20 minutes at 4 °C. The pellet obtained was mixed with
Laemmli buffer (2 % SDS, 10 % Glycerol, 0.002 % bromo-
phenol blue, 6.25 mM Tris–HCl pH 6.8, bidistilled H2O,
2 % β-mercaptoethanol and phosphatase inhibitor cock-
tails), and pellets containing NeuN+ and NeuN- nuclei
were processed in parallel for 10 % SDS-PAGE electro-
phoresis and western blotting. Demonstration that this
fraction contained only nuclei without cytoplasmic
contamination was carried out by western blotting
with SOD-1 and histone H3 antibodies as indicated
in Additional file 3: Table S3. Anti-α-synuclein oligo-
mer-specific antibody (Agrisera, Vännäs, Sweden) was
used to identify the presence of oligomers; the bands were
visualized with the ECL method (Amersham).

Results
mRNA expression levels of nucleolar proteins in the
substantia nigra, frontal cortex area 8, angular gyrus,
precuneus, and putamen
Since nucleolar proteins are implicated in rRNA process-
ing, the first step in the study was to analyse the mRNA
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Fig. 1 Altered mRNA expression levels of nucleolar proteins nucleophosmin (NPM1/B23), nucleoplasmin 3 (NPM3), nucleolin (NCL), and upstream
binding transcription factor (UBTF) in the substantia nigra, frontal cortex area 8, and angular gyrus in middle-aged (MA) and PD as determined by
TaqMan PCR assays using GUS-β for normalization. Reduced expression of NPM1 and UBTF mRNAs is found in the substantia nigra at stages 3–4,
but reduced NPM1, NPM3, NCL, and UBTF expression levels are found at stages 5–6. Only NPM1 and NCL mRNAs are decreased in the frontal cortex at
advanced stages of the disease. UBTF gene expression is transiently decreased at stages 3–4 in the angular gyrus. Student’s t test *p < 0.05, **p < 0.01
and ***p < 0.001
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expression levels of two chaperones and one protein
linked to RNA polymerase.
No modification in the mRNA expression levels of

nucleophosmin (NPM1), nucleoplasmin 3 (NPM3), nucleo-
lin (NCL), or upstream binding transcription factor (UBTF)
was observed in the substantia nigra at PD stages 1–2 when
compared with the MA group. However, NPM1 and UBTF
were significantly down-regulated (p < 0.05) at stages 3–4,
as were NPM1, NPM3, UBTF, and NCL at stages 5–6
(p < 0.001) (Fig. 1). No significant differences were
observed when comparing PD 3–4 with PD 5–6.
Therefore, changes with disease progression were seen
between stages 1–2 and stages 3–6 (see Additional
file 4: Table S4).
No differences in NCL, NPM1, NPM3, or UBTF mRNA

expression were observed in frontal cortex area 8 at stages
3–4 when compared with the MA group, but NPM1 and

NCL mRNAs were significantly increased (p < 0.05,
and p < 0.001, respectively) at stages 5–6 (Fig. 1).
A transient decrease in UBTF mRNA expression was

found in the angular gyrus at stages 3–4 (Fig. 1). No
modifications in the expression of NPM1, NCL, NPM3,
or UBTF mRNAs were identified in the precuneus and
putamen at any stage analysed.
Details of all genes analyzed are found in Additional

files 4, 5, 6, 7 and 8.

18S rRNA and 28S rRNA in the substantia nigra, frontal
cortex area 8, angular gyrus, precuneus, and putamen
In the substantia nigra, 18S rRNA levels were signifi-
cantly reduced at stages 3–4 (p < 0.01), as were 28S
rRNA and 18S rRNA levels at stages 5–6 (p < 0.05 and
p < 0.001, respectively) (Fig. 2). Therefore, differences

Fig. 2 Altered expression levels of rRNA28S and rRNA18S in substantia nigra, frontal cortex area 8, angular gyrus, precuneus, and putamen in middle-
aged (MA) and PD as determined by TaqMan PCR assays using GUS-β for normalization. Student’s t test *p < 0.05, **p < 0.01 and ***p < 0.001
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along disease progression were seen between stages 1–2
and 3–6 (Additional file 4: Table S4).
In frontal cortex area 8, a significant increase in 18S

rRNA (p < 0.05) was found at stages 5–6 (Fig. 2). rRNA
expression was not altered in the angular gyrus. A tran-
sient 18S rRNA decrease (p < 0.05) and a transient 28S

rRNA increase (p < 0.05) was noted in the precuneus
and putamen, respectively, at stages 3–4. 28S rRNA up-
regulation (p < 0.05) was observed in the precuneus at
stages 5–6 (Fig. 2). Therefore, definite up-regulation of
18S rRNA and 28S rRNA was identified in the frontal cor-
tex and precuneus, respectively, at advances stages of PD.

Fig. 3 Altered mRNA expression levels of 16 ribosomal proteins in the substantia nigra in middle-aged (MA) and PD cases determined by TaqMan PCR
assays using GUS-β for normalization. Student’s t test *p < 0.05, **p < 0.01 and ***p < 0.001
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Fig. 4 Altered mRNA expression levels of 16 ribosomal proteins in the frontal cortex area 8 in middle-aged (MA) and PD cases determined by TaqMan
PCR assays using GUS-β for normalization. Student’s t test *p < 0.05, **p < 0.01 and ***p < 0.001
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Details of rRNA results in all regions and stages are
found in Additional files 4, 5, 6, 7 and 8.

mRNA expression levels of genes encoding ribosomal
proteins in the substantia nigra
Since ribosomal proteins are essential to the assembly of
ribosomal subunits and to the process of protein synthesis,
the next step was to analyse gene expression of 9 RPL and 7
RPS genes. Selection of these mRNAs was done at random.
No significant changes were observed in the substantia

nigra at stages 1–2. However, twelve of sixteen genes
analysed were significantly down-regulated in the sub-
stantia nigra at stages 3–4 including RPL5, RPL21,
RPL23A, RPL26, RPL27, RPL30, RPS10, RPS13, RPS16,
RPS17, RPS5, and RPS6 (p values varied from < 0.05

to <0.001) (Fig. 3). Fourteen genes were down-regulated in
the substantia at stages 5–6. These included, in addition
to those down-regulated at stages 3–4, RPL7 and RPL31
(p values ranged from < 0.01 to < 0.001) (Fig. 4). Therefore,
major modifications with disease progression were found
between stages 1–2 and stages 3–6.
Details of all genes analyzed are found in Additional

file 4: Table S4.

mRNA expression levels of genes encoding ribosomal
proteins in frontal cortex area 8, angular gyrus,
precuneus, and putamen
A transient down-regulation in the expression of RPL7
(p < 0.05), RPS6 (p < 0.05), RPS10 (p < 0.05) and RPS13
(p < 0.001) was found in frontal cortex area 8 at stages 3–4.

Fig. 5 Altered mRNA expression levels of 16 ribosomal proteins in the angular gyrus in middle-aged (MA) and PD cases determined by TaqMan PCR
assays using GUS-β for normalization. Student’s t test *p < 0.05, **p < 0.01 and ***p < 0.001
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However, two genes were up-regulated in the frontal cortex
at stages 5–6: RPL23A (p < 0.05) and RPL26 (p < 0.01)
(Fig. 5). In short, five genes were significantly up-regulated
in the frontal cortex when comparing PD stages 3–4 and
PD stages 5–6: RPL7, RPL22, RPL23A, RPL26, RPS6, and
RPS17 (see Additional file 5: Table S5).
Only one gene, RPS3A, was up-regulated (p < 0.01) in

the angular gyrus at stages 5–6 (Fig. 5), thus indicating
modifications with disease progression (see Additional
file 6: Table S6).
The precuneus showed a similar pattern to frontal cor-

tex area 8 with decreased mRNA expression of certain

genes at PD stages 3–4 followed by increased expression
of other genes at stages 5–6. Yet the genes involved dif-
fered in the frontal cortex area 8 from the precuneus.
Reduced RPL5 (p < 0.05), RPS10 (p < 0.05), and RPS16
(p < 0.01) mRNA expression occurred at stages 3–4
compared to the MA group. Increased RPL27 (p < 0.05),
RPL30 (p < 0.001), RPL31 (p < 0.01), RPS5 (p < 0.05), and
RPS6 (p < 0.01) mRNA expression was found at stages
5–6 (Fig. 6).
Only RPL5 of the sixteen assessed RNAs encoding

ribosomal proteins was increased at stages 5–6 in the
putamen in PD (see Additional file 8: Table S8).

Fig. 6 Altered mRNA expression levels of 16 ribosomal proteins in the precuneus in middle-aged (MA) and PD cases determined by TaqMan PCR as-
says using GUS-β for normalization. Student’s t test *p < 0.05, **p < 0.01 and ***p < 0.001
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Immunohistochemistry of nucleolar proteins in the
substantia nigra
To learn whether mRNA changes in nucleolar chap-
erones translated into altered protein expression, im-
munohistochemistry and immunofluorescence to
NPM1 and NPM3 were performed in the substantia
nigra.
A similar approach was tried for the study of riboso-

mal proteins. After testing more than twelve antibodies,
none of them was useful for immunohistochemistry and
western blotting.
NPM1 and NMP3 localized in the nucleolus in MA and

diseased cases. However, decreased NPM1 immunoreac-
tivity was reduced in pigmented neurons (Fig. 7a-c). In
contrast, NPM3 immunoreactivity was preserved in the
majority of neurons (Fig. 7d-f).
Quantitative studies were performed to rule out reduced

or missing NPM1 immunoreactivity being due to artefacts
of nucleolar sectioning or to altered nucleolar immunoreac-
tivity to different nucleolar markers. Counts were made on
serial non-consecutive sections of the same cases stained
with haematoxylin and eosin, and processed for NPM1 and
NPM3 immunohistochemistry without counterstaining.
The percentage of neurons in the substantia nigra pars
compacta with visualized nucleoli at PD stage 1, as assessed
in haematoxylin and eosin sections, and NPM1 and NPM3
immunohistochemistry, was about 50 %. The total number
of neurons decreased with disease progression, representing

about 40 % neuron loss at stage 5 when compared with PD
stage 1. NPM3-immunoreactive nucleoli were found in
44 % of remaining neurons at stage 5, but the percentage of
NPM1-immunoreactive nucleoli in remaining neurons was
around 34 % at stage 5. Weakly stained nuclei were consid-
ered positive nuclei. Quantitative results are shown in
Additional file 9: Table S9.
These results suggest that reduced NPM1 immunore-

activity is not merely a reflection of neuron loss but
rather indicates selective vulnerability of NPM1 when
compared with NPM3 to PD.
Whether decreased NPM1-immunoreactive nucleoli

in advanced stages of PD was a reflection of the co-
occurrence of Lewy bodies in a particular neuron was
assessed using double-labelling immunofluorescence
and confocal microscopy with anti-NPM1 and anti-α-
synuclein antibodies in six cases (1 tissue section per
case) of PD at stages 4–5. Decreased nucleolar NPM1
immunoreactivity occurred independently of the pres-
ence or absence of α-synuclein inclusions in the cyto-
plasm of neurons (data not shown).

Protein expression of initiation and elongation transcription
factors in substantia nigra and frontal cortex area 8
The expression levels of initiation factors eIF1, eIF2-α, P-
eIF2-α, eIF3, eIF3η, and eIF5, and elongation factors
eEF1A and eEF2, were analysed with western blotting.
These antibodies did not work for immunohistochemistry.

Fig. 7 a-c: Nucleophosmin (NPM1) immunohistochemistry in the substantia nigra pars compacta in PD at stages 1–2 (a), 3–4 (b), and 5–6 (c)
showing NPM1 immunoreactivity in the nucleoli (arrows). The number and intensity of NPM1 immunoreactivity decreases at advanced stages
of PD. d-f: Nucleoplasmin 3 (NPM3) immunohistochemistry in the substantia nigra pars compacta in PD at stages 1–2 (d), 3–4 (e), and 5–6 (f) showing
preserved NPM3 immunoreactivity in the nucleolus (arrows). Paraffin section without haematoxylin counterstaining, bar = 50 μm
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A significant increase in eIF3 and eEF2 was observed
in the substantia nigra, especially at stages 5–6, when
compared with the values for the MA group (Fig. 8a).
In contrast, eIF3 expression levels were significantly

reduced at stages 3–4 (p < 0.01) and 5–6 (p < 0.001),
whereas eIF1 expression levels were significantly in-
creased (p < 0.05) at stages 5–6 in frontal cortex area 8.
Regarding elongation factors, eEF1A and eEF2 protein
expression was significantly decreased at stages 3–4

(p < 0.05), and more markedly so for eEF1A (p < 0.01)
at stages 5–6 (Fig. 8b).

Reticulum stress markers in substantia nigra and frontal
cortex area 8
Abnormal protein synthesis and accumulation of abnor-
mal proteins in the endoplasmic reticulum is causative
of the endoplasmic reticulum stress response [18]. For

Fig. 8 Western blotting of eukaryotic initiation factors eIF1, eIF2-α, eIF3, eIF3 , and eIF5, and elongation factors eF1A and eF2 in the substantia nigra (a)
and frontal cortex area 8 (b). Significantly increased expression of eIF3 and eEF2, more marked at stages 5–6, is observed in the substantia nigra in PD
compared with MA individuals. In contrast, eIF3 expression is significantly reduced in frontal cortex area 8 at stages 3–4 and 5–6, whereas
eIF1 is significantly increased at stage 5–6. Expression of elongation factors eF1A and eF2 is also significantly reduced in the frontal cortex
in PD; β-actin is used as a control of protein loading. AU:arbitrary units. *p < 0.05; **p < 0.01
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this reason, we also explored the unfolded protein
response (UPR) in the two brain areas in PD.
The expression levels of proteins GRP78, GRP94,

ATF4, ATF6, XBP1, p54, and P-IRE-1 were analysed in
the substantia nigra and frontal cortex area 8 in PD
cases at stages 3–4 and 5–6 in comparison with samples
from MA individuals.
Increased expression levels of ATF4 and ATF6 90 kDa

at stages 5–6 (p < 0.05), and reduced GRP94 expression
levels at stages 3–4 and 5–6 (p < 0.01), were found in
the substantia nigra in PD (Fig. 9a). No ATF6f (50 kDa)
was identified in any group (data not shown). Reduced
expression levels of GRP78 were observed in frontal cor-
tex area 8 at stages 3–4 and 5–6 (p < 0.01 and p < 0.001,
respectively). No changes in the expression of other
reticulum stress markers were found in frontal cortex
area 8 in PD (Fig. 9b).

Double-labelling immunofluorescence and confocal
microscopy in the substantia nigra in PD cases stages 4
and 5 showed α-synuclein in Lewy bodies and neurites
co-localizing with eIF3. Quantitative studies showed 27
of 31 α-synuclein immunoreactive neurons co-localizing
with eIF3 in Lewy bodies (87 %). In contrast, GRP78,
GRP94, IRE-1, and XBP1 did not show co-localization
with α-synuclein inclusions (Fig. 10).

α-synuclein oligomeric species in total homogenate
fractions
The anti-α-synuclein oligomer-specific antibody stained
Lewy bodies and neurites, and small granules in substan-
tia nigra neurons in paraffin sections. The background
was clear, and the small dots consistent with small de-
posits of oligomers in the neuropil were extremely rare
(data not shown).

Fig. 9 Western blotting of glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94), activating transcription factor 4 (ATF4),
activating transcription factor 6 (ATF6), Xbox binding protein 1 (XBP1), and phosphorylated inositol requiring kinase 1 (P-IRE-1) in the substantia
nigra (a) and frontal cortex area 8 (b) shows significantly increased expression of ATF4 and ATF6 90 kDa at stages 5–6 (p < 0.05), and reduced
expression of GRP94 at stages 3–4 and 5–6 (p < 0.01) in the substantia nigra in PD when compared with MA individuals. ATF6f (50 kDa), the
cleaved and active form of ATF6, was not identified in any group. In contrast, significant reduction of GRP78 (p < 0.01 at stages 3–4, and p < 0.001
at stages 5–6) with preservation of other reticulum stress markers was found in frontal cortex area 8 in PD. Note that a double band with GRP94,
ATF4, and P-IRE-1 antibodies is observed in the substantia nigra but not in the frontal cortex. The expected molecular weight is marked by an
arrowhead in SN western blots. β-actin is used as a control of protein loading. AU: arbitrary units; *p < 0.05; **p <0.01
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Fig. 10 Double-labelling immunofluorescence and confocal microscopy in the substantia nigra in PD cases stages 4 and 5 to α-synuclein (b, e, h, k, n, q)
and p54 (a), eIF3 (d), GRP78 (g), GRP94 (j), IRE1 (m), and XBP1 (p); c, f, i, l, o, r: merge. α-synuclein in Lewy bodies and neurites (red) only co-localizes with
eIF3 (green). Paraffin sections, nuclei are stained with DRAQ5TM. a-f, bar = 35 μm; G-I, m-o, bar = 30 μm; j-l, p-r, bar = 20 μm
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The biochemical analysis of α-synuclein oligomeric
species was carried out on frozen samples of the sub-
stantia nigra, frontal cortex area 8, and putamen in MA
and PD cases in cytosolic (PBS; Cyt), deoxycholate
(Dxc), and sodium dodecyl sulfate (SDS) fractions. In
the substantia nigra, a band of α-synuclein at the
expected molecular weight, about 17 kDa, was observed
in MA and PD cases at stages 5–6 in the three fractions,
although the density of the band was higher in PD than
in MA cases. In addition, two well-defined bands of
50 kDa and approximately 100 kDa were obtained in all
three fractions (Cyt, Dxc, and SDS) in the substantia
nigra in PD (Fig. 8). α-synuclein oligomeric species were
also seen in the frontal cortex in PD at stages 5–6, but
the band pattern differed from that seen in substantia
nigra. In addition to the band of about 17 kDa found in
MA and PD cases, three bands of molecular weight of
about 35 kDa, 50 kDa, and 90 kDa, all of them with
marked smear, were observed mainly in the cytosolic
and deoxycholate fractions in the frontal cortex only in
PD (Fig. 8). In contrast, no oligomeric species were
detected in the putamen; only the band of about 17 kDa
was identified equally in MA and PD cases (Fig. 11).

α-synuclein oligomeric species in isolated nuclei obtained
by FACS
Nuclear fractions were obtained by FACS using DAPI
and NeuN antibody from the grey matter of frontal cor-
tex area 8 in MA and PD cases (Fig. 12a). DAPI binds
strongly to DNA and labels all nuclei in the suspension
regardless of cell type. Using this approach, it is not

difficult to discriminate single nuclei (R1) from doublets,
triplets, and aggregates, as well as debris and back-
ground noise. Nuclei selected in R1 were sorted into
neuronal (NeuN+) and non-neuronal (NeuN-). To de-
fine more accurately the population, NeuN was analysed
on the same plot as red fluorescence to eliminate cells
not completely lysed, permeable to DAPI, and with more
autofluorescence than isolated nuclei. Purity of the nu-
clear fractions was assessed by demonstrating histone
H3 immunoreactivity (a band at 17 kDa) and lack of
SOD-1 immunoreactivity in the isolated nuclei in both
NeuN- and NeuN+ samples in MA and PD cases.
Western blots using specific antibodies to α-synuclein
oligomeric species demonstrated in the NeuN+ samples
one band at about 20 kDa and two bands of about
50 kDa and 100 kDa in PD cases. One weak band at
about 20 kDa was also seen in the NeuN- samples in PD
(Fig. 12b). No bands of α-synuclein oligomers were de-
tected in NeuN+ and NeuN- samples in MA cases proc-
essed in parallel, excepting weak bands after long
exposure in some cases (Additional file 10: Figure S1).

Discussion
Nucleolar proteins and rRNAs are differentially regu-
lated in the substantia nigra, frontal cortex area 8, angu-
lar gyrus, precuneus, and putamen in PD, and changes
accelerate with disease progression
Ribosomal RNA genes are arranged in tandem repeats

in the NORs and are transcribed by RNA polymerase I
in conjunction with associated factors including UBF
(upstream binding transcription factor, encoded by

Fig. 11 Western blotting of α-synuclein oligomeric species in the substantia nigra pars compacta (SN), frontal cortex area 8 (FC), and putamen (Put) in
total homogenate cytosolic (Cyt), deoxycholate (Dxc), and sodium dodecyl sulphate (SDS) fractions in middle-aged individuals (MA) and Parkinson’s
disease stages 5–6 (PD). α-synuclein oligomeric species are only observed in the three fractions in PD but not in MA cases, thus indicating
abnormal α-synuclein solubility and aggregation of α-synuclein in the substantia nigra and frontal cortex in PD. However, the patterns of α-synuclein
oligomers differ in the three regions. Two net bands of 50 kDa and about 100 kDa are seen in the three fractions in the substantia nigra, but three
bands with a considerable smear of about 30 kDa, 50 kDa, and 90 kDa are found, mainly in the cytosolic and deoxycholate fractions, in
the frontal cortex. In addition, note the higher density of α-synuclein bands in the frontal cortex when compared with the substantia nigra in PD. No
α-synuclein oligomers are detected in the putamen, whereas a band of about 17 kDa is found in MA and PD cases
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UBTF) and SL1 proteins [19–26]. rDNAs encode precur-
sor transcripts which are processed to form 18S, 28S,
and 5.8S RNAs [27]. UBF is localized in the nucleoli in
interphase cells and it regulates RNA polymerase 1
following acetylation [28–30].
Nucleolin (NCL) and nucleophosmin (NPM1/B23) are

other major nucleolar proteins acting as histone-binding
chaperones required for chromatin compaction, regula-
tion of rRNA transcription, nucleic acid binding, and nu-
clear re-programming [10, 26, 31–42]. In addition, NPM1
is involved in the nuclear transport of proteins to the nu-
cleolus and of certain ribosomal proteins to the cytoplasm
[43–46]. NPM1-null mice display altered ribosome bio-
genesis and premature death at mid-gestation [47, 48].

NPM1 acts as a ribonuclease for the maturation of rRNA
transcript [49, 50], silencing NPM1 results in altered
processing of 28S RNA [51]. Additional functions of
NPM1 are related to DNA replication, transcription,
and repair [37]. NPM3 is a nucleolar histone chaperone
that interacts with nucleophosmin and modulates
ribosome biogenesis [52, 53].
Cellular and molecular alterations associated with im-

paired nucleolar activity are causative of nucleolar stress
[54–56] which can lead to the malfunction of the nucle-
olar machinery, altered rRNA expression, reduced protein
synthesis, and, when extreme, cell death. Nucleolar stress
is emerging as an important sensor in several pathological
conditions [57] including ischemic damage, cancer

Fig. 12 Illustrating example of the gating strategy used for neuronal nuclei sorting. Single nuclei were gated (R1) based on their DAPI labelling,
followed by gating neuronal nuclei (NeuN+) and non-neuronal nuclei (NeuN-) on the NeuN vs red autofluorescence dot plot. Representative
western blotting of isolated nuclei obtained by FACS of frontal cortex area 8 of middle-aged (MA) and Parkinson’s disease (PD) stage 5–6 cases.
No signal was detected with anti-superoxide dismutase 1 (SOD-1) antibodies but there was one specific band at 17 kDa with anti-histone H3 antibody,
thus demonstrating no cytoplasmic contamination of isolated nuclei. One band at about 20 kDa and two bands at about 50 kDa and at 100 kDa are
detected with specific anti-α-synuclein oligomeric species in the neuronal nuclear sample (NeuN+) in PD. Interestingly, a weak α-synuclein low band is
also detected in the non-neuronal nuclei sample in PD

Garcia-Esparcia et al. Acta Neuropathologica Communications  (2015) 3:76 Page 17 of 25



[58–60], and neurodegeneration [61–63]. Nucleolar
stress has been documented in AD [64], and in poly-
glutamine diseases including Huntington’s disease and
related models [65–68].
The present study identifies reduced NCL and NPM1

mRNA levels and NPM1 immunoreactivity in the sub-
stantia nigra in PD cases with disease progression. NPM3
mRNA expression levels are also reduced in the substantia
nigra at advanced stages. Reduced mRNA expression may
be related to the progressive loss of dopaminergic neurons
in the substantia nigra, but preserved expression of NPM3
protein, in contrast to decreased NPM1 immunoreactivity
in remaining dopaminergic neurons, indicates selective
vulnerability of NPMs to neurodegeneration. Reduced
NCL mRNA is in agreement with previous observations
showing reduced nucleolin protein expression in the sub-
stantia nigra in PD [69]. The reduced UBTF here observed
is also in line with previous observations of nucleolar dis-
ruption in dopaminergic neurons in PD [8]. The reduced
nucleophosmin expression in the substantia nigra in PD
here observed for the first time may act as an additional
cause of neurodegeneration [70].
Reduced expression of 18S rRNA and 28S rRNA gives

strong support to the concept that nucleolar stress is a
major alteration in the substantia nigra in PD [64]. Al-
though decreased biosynthesis of ribosome subunits may
be a response to preserve energy homeostasis in acute
stress situations [71], it is less clear that maintained re-
duced expression of rRNAs has any beneficial effect on
cell survival. Rather, perpetuation of nucleolar stress and
reduced rRNA synthesis is consistent with parallel cell
damage in PD substantia nigra.
In contrast to the substantia nigra, NCL and NPM1

mRNAs are increased in frontal cortex area 8 in PD at
stages 5–6, whereas UBTF appears to be transiently
decreased in the angular gyrus at stages 3–4. No modifi-
cations in NCL, NPM1, and UBTF gene expression are
seen in the precuneus and putamen at any stage of the
disease. In contrast to the substantia nigra, 18S rRNA
and 28S rRNA are increased in the frontal cortex and
precuneus, respectively, at stages 5–6 of Braak. Overex-
pression of NCL is neuroprotective against rotenone, a
toxicant used to experimentally reproduce some charac-
teristics of PD in animal models [72]. Overexpression of
NPM1 is neuroprotective against kainic acid-induced
excitotoxicity [73, 74]. Therefore, increased NCL and
NPM1 mRNA expression in frontal cortex appears to be
a response to PD geared to protecting rRNA synthesis.
According to this hypothesis, 18S rRNA expression is
increased in frontal cortex at advanced stages of PD.
Lack of correlation between preserved NCL and NPM1
expression and increased 28S rRNA in the precuneus
may be related to the participation of other regulators of
rRNA biosynthesis not examined in the present study.

Altered expression of ribosomal protein mRNAs in PD is
region- and stage-dependent
Ribosomes (80S) are cytoplasmic structures measuring
25–30 nm composed of 65 % RNAs and 35 % ribosomal
proteins that form a smaller subunit (40S) which binds
to mRNA and a larger subunit (60S) which binds to
tRNAs and amino acids. In eukaryotes, the smaller sub-
unit is made of 18S RNA and 33 proteins whereas the
larger subunit is formed by 5S RNA, 5.8S RNA, 28S
RNA, and 46 ribosomal proteins [55, 75–84]. Ribosomal
proteins also participate in protein synthesis initiation
and elongation, and they can regulate their own synthe-
sis at the translational level [85–90].
The present results show decreased gene expression of

12 of 16 examined ribosomal protein mRNAs in the sub-
stantia nigra at stages 3–4 (covering 6 RPL and 6 RPS),
and 14 (covering 8 RPL and 6 RPS) of 16 at stages 5–6
of Braak. These changes are progression-dependent and
may reflect in part progressive neuronal loss in the sub-
stantia nigra. However, altered ribosomal protein gene
expression also occurs in cerebral cortex in PD with
stage and region peculiarities. Altered mRNA expression
of several ribosomal proteins in the cerebral cortex ap-
pears to be a plastic process depending on the cortical
region and stage of the disease. Decreased expression of
a few mRNAs at stages 3–4 followed by up-regulation of
a few different ribosomal protein mRNAs at stages 5–6
in frontal cortex and precuneus suggests modifications
in the structure and functional capacities of cortical ri-
bosomes with disease progression. It is worth stressing
that only 16 of 79 ribosomal protein mRNAs were
selected for the present study, and although the number is
representative of ribosomal protein mRNA modifications
it does not cover the total number of ribosomal proteins
and the possible modifications of additional mRNAs.

Expression of initiation and elongation factors in
substantia nigra and frontal cortex area 8 in PD
Translation initiation in the ribosome is geared by the
interactions of 12 eukaryotic translation initiation factors
(eIFs), most of them composed of several subunits. The
43S preinitiation complex is composed of the small 40S
ribosomal subunit, the initiating methionyl-tRNA bound
to eIF2-GTP, and eIF1, eIF1a, and eIF3. mRNA is added
to the 43S preinitiation complex together with the
poly(A) binding protein (PABP) and the eIF4f complex
(a heterotrimeric complex composed of eIF4a, eIF4e,
and eIF4g) bound to an AUG codon. eIF2B and eIF5 ac-
tivate eIF2 and regulate eIF2-GDP recycling, respect-
ively, whereas eIF5b and eIF6 participate in ribosomal
subunit joining and binding [91–94]. Elongation occurs
when elongating factor eEF1A is activated following
GTP-binding and forms a complex with aminoacyl-
tRNA which recognizes the specific sequence in mRNA
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at the ribosome. Once the interaction of the codon in
mRNA with the anti-codon in tRNA is decoded, eEF1A-
GDP is hydrolysed, released from the ribosome, and
recycled into its active form by eEF1B. eEF2 assists in
the precise codon location at the ribosome [95–104].
Synthesis terminates in the presence of a stop codon in
the mRNA sequence which is recognized by a releasing
factor that sets the polypeptide chain free [105, 106].
In the substantia nigra, eIF3 and eEF2 expression

levels were increased more markedly at stages 5–6 in
PD, suggesting activation of peptide synthesis. It can be
suggested that activation of peptide synthesis is related
to compensatory mechanisms in preserved dopaminergic
neurons in the face of the altered expression of genes
involved in ribosomal proteins and, consequently, in the
assembly of the functional ribosome. Alternatively, since
western blots cannot discriminate between neurons and
glial cells, increased eIF3 and eEF2 expression levels
might be related to increased protein synthesis in react-
ive astrocytes.
In cerebral cortex area 8, among the five eIFs and sub-

units examined, only eIF3 was significantly decreased at
stages 3–4 and 5–6, suggesting that recruitment of mRNA
to the 40S subunit is hampered as a result of lower eIF3
expression. Regarding elongation factors, significantly
reduced expression of eEF1A and eEF2 with disease pro-
gression lends strong support to the hypothesis of altered
polypeptide synthesis in frontal cortex in PD.

Reticulum stress responses in the substantia nigra and
frontal cortex in PD with disease progression
The unfolded protein response (UPR) designates the
cellular response to the accumulation of abnormal pro-
teins in the endoplasmic reticulum. The reaction can
also be elicited by other factors such as hypoglycemia,
hypoxia, acidosis, calcium, redox reactions, and a variety
of natural compounds and drugs [18]. Control of protein
folding at the endoplasmic reticulum (ER) is modulated
by the chaperone glucose-regulated protein 78 (GRP78,
also named immunoglobulin binding protein BIP), a
member of the HSP70 family which, in non-stressed
cells, binds to three ER transmembrane proteins: PKR-
like ER kinase (PERK), inositol requiring kinase 1 (IRE1),
and transcription factor 6 (ATF6) [107–110]. Glucose-
regulated protein 94 is the HSP90-like protein in the
lumen of the endoplasmic reticulum and therefore it
chaperones secreted and membrane proteins [111, 112].
Accumulation of misfolded proteins in the endoplasmic
reticulum activates PERK [113] and phosphorylates the
α-subunit of eukaryotic initiation factor 2 (eIF2-α) at
serine 51, resulting in decreased protein synthesis [114].
In addition, eIF2α phosphorylation sets off activating
transcription factor 4 (ATF4), promoting DNA tran-
scription of specific genes [115]. ER responses also

involve the activation of inositol-requiring kinase 1
(IRE1) by dimerization and phosphorylation which acti-
vates the transcription factor Xbox binding protein
(XBP1), which in turns activates transcription of stress
genes in DNA [69, 116, 117]. Upon ER stress, full acti-
vating transcription factor 6 (ATF6) of 90 kDa moves to
the Golgi complex where it is cleaved to form the active
transcription factor of 50 kDa (ATF6-50 kDa: ATF6f ),
which translocates to the nucleus and activates tran-
scription of stress genes [118]. Therefore, activation of
ATF4, IRE1, and ATF6f increases the production of
GRP78, GRP94, PERK, IRE1, XBP1, and ATF6, and stim-
ulates the ER-associated degradation (ERAD) pathway
[119, 120], contributing to restoring homeostasis. How-
ever, once passed certain thresholds, ER stress can trigger
NF-κB activation and caspase-mediated apoptosis [113,
121–123].
ER stress has been implicated in the pathogenesis of

neurodegenerative diseases including PD [6, 124, 125].
Markers of the unfolded protein response (phosphory-
lated PERK and phosphorylated eIF2α) have been identi-
fied in dopaminergic neurons of the substantia nigra
containing α-synuclein inclusions at relatively early
stages of PD [126, 127]. ATF4 and total ATF6 expression
levels are elevated in the substantia nigra at advanced
stages of the disease, suggesting activation of the UPS
response. It is worth noting that ATF4 levels have been
reported to be increased in neuromelanin-containing
neurons in the substantia nigra in PD, and elevated
levels of ATF4 are protective of neurons subjected to
noxious stimuli [128].

α-synuclein oligomeric species
α-synuclein was first described in the nucleus and pre-
synaptic nerve terminals from Torpedo [129]. The
localization and function of this protein in the nucleus
has been a primary focus of study partly due to the over-
whelming information about the accumulation of abnor-
mal α-synuclein in the cytoplasm of neurons in PD and
in neurons and oligodendroglia in multiple system atro-
phy. However, α-synuclein is identified in the nucleus in
different settings using different methods [130–136], and
it is especially abundant during development modulating
neurogenesis [137–139]. Nuclear α-synuclein levels are
increased accompanying oxidative stress in vitro and in
vivo [140, 141], and nuclear α-synuclein seems to facili-
tate, in turn, oxidative stress [142]. The mechanism of
effects of nuclear α-synuclein is poorly understood but
α-synuclein binds to histones and inhibits histone acetyl-
ation [130, 143]. Moreover, α-synuclein, under condi-
tions of oxidative stress, binds to the promoter of the
mitochondrial transcription factor PGC1-α and reduces
transcription of mitochondrial genes [144].
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α-synuclein is primarily a disordered monomer that
binds to and transiently stabilizes different substrates
such as lipids and membrane vesicles playing variegated
physiological functions [145–147]. However, soluble β-
rich oligomers are experimentally promoted in vitro by
several physical and chemical agents, and they are also
naturally produced in disease states influenced by fatty
acids, α-synuclein mutations, oxidative stress, phosphor-
ylation, nitration, ubiquitination, and truncation, where
they come to be toxic for nerve cells [144, 148–154]. In-
creased expression levels of α-synuclein oligomers have
been found in the brain in Lewy body diseases and
related transgenic models [14, 155–158]. Interestingly,
the band pattern of α-synuclein oligomers analysed here
differs in the substantia nigra and frontal cortex area 8,
suggesting regional differences in the composition of
oligomeric species in the substantia nigra and cerebral
cortex in PD. Importantly, the intensity of oligomeric
species in western blots is greater than what is expected
following examination of paraformaldehyde-fixed paraf-
fin sections of the frontal cortex in which only a few
Lewy bodies and neurites are detected with immunohis-
tochemistry using the same antibody. Therefore, it may
be inferred that most α-synuclein oligomers are not
identified in paraffin sections processed for immunohis-
tochemistry; only those linked to fibrillary deposits in
Lewy bodies and neurites remain. Observations in the
putamen are particularly interesting as no oligomeric α-
synuclein species are identified in the same PD cases
used in substantia nigra and frontal cortex. This means
important regional differences in α-synuclein oligomers
in PD represent, on the one hand, regional differences in
α-synuclein metabolism, and, on the other, these differ-
ences may reflect specific regional vulnerability in PD.
A recent study has shown that α-synuclein proximity

ligation assay (AS-PLA) permits the visualization of
undetected diffuse α-synuclein oligomeric pathology in
PD brains [159]. α-synuclein oligomers are detected in
the cytoplasm of neurons with α-synuclein inclusions, as
revealed with current immunohistochemistry, but also
widespread in nerve terminals (consistent with synaptic
localization) and in the cytoplasm of vulnerable neurons
with no apparent α-synuclein pathology as detected by
current immunohistochemical methods. No nuclear α-
synuclein oligomers were reported in that study but the
accompanying figures showed small immunoreactive
dots in certain nuclei. The present observations show
unequivocal presence of α-synuclein oligomers in FACS-
isolated neuronal nuclei in PD. Interestingly, a weak
band of α-synuclein is also detected in NeuN- samples
(corresponding to non-neuronal nuclei) in PD. This
raises the possibility that α-synuclein is abnormally
present in the nuclei of glial cells in PD. In this line,
α-synuclein deposition has been reported in protoplasmic

astrocytes in PD [160, 161]. It is worth stressing that weak
bands of α-synuclein oligomers in isolated neuronal nuclei
from certain MA are only visualized after long-term
exposure. AS-PLA has also allowed the visualization of α-
synuclein oligomers in neuronal nuclei in control cases
(see Fig. 12, ref 131) although this fact was not mentioned
in the original paper.

Conclusions
Our previous studies, among others, have shown that in
spite of the absence or the relatively small numbers of Lewy
bodies and neurites in the cerebral cortex in PD until ad-
vanced stages of the disease, there is a plethora of molecu-
lar alterations including altered synaptic modulation and
transmission, mitochondrial dysfunction, oxidative stress
damage, reduced energy metabolism, altered purine metab-
olism, increased inflammatory responses, and abnormal
expression of receptors whose function is still poorly under-
stood [13–15, 162, 163]. All these alterations converge in
the most vulnerable regions of the cerebral cortex
and extend to other regions with disease progression
[126, 164–166]. To the list of apparently unrelated
deleterious events, we may add altered machinery of
protein synthesis targeted not only in the substantia
nigra but also in the cerebral cortex in PD at middle
and advanced stages of the disease. Frontal cortex area 8 is
more affected than the angular gyrus and precuneus. α-
synuclein oligomeric species seem to have direct and indir-
ect deleterious effects on mitochondria [152, 167–169],
proteasome [170], endoplasmic reticulum [6], and synapses
[171–173], among other subcellular structures [153, 174].
Importantly, altered protein machinery in PD relates to the
presence of α-synuclein oligomeric species in total homoge-
nates. Substantia nigra and frontal cortex are enriched, al-
beit with different band patterns, in α-synuclein oligomeric
species, whereas α-synuclein oligomers are not detected in
the putamen. Unfortunately, rapid blocking of protein
synthesis following hypoxia and other insults aimed at not
producing abnormal proteins under suboptimal conditions
such as those inherent to the process of dying precludes
direct and accurate study of protein synthesis in human
post-mortem brains (unpublished observations). Therefore,
a direct observation of impaired protein synthesis in PD
post-mortem brains is technically not possible.
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Additional file 1: Table S1. Summary of the main individual
characteristics of the cases used in this study. M: male; F: female; P-M: post-
mortem delay (hours, minutes); PD Braak: Parkinson’s disease-related pathology
stages 1–6 of Braak; 0: no neurological or neuropathological anomalies; FC:
frontal cortex area 8; SN: substantia nigra; AG: angular gyrus; PC: precuneus;
PUT: putamen; RIN: RNA integrity number; WB: western blot; IHC:
immunohistochemistry; OLI: α-synuclein oligomeric species. (DOC 331 kb)
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Additional file 2: Table S2. TaqMan probes used for the study of
mRNA expression of nucleolar proteins, ribosomal RNAs, and ribosomal
proteins including the probes for normalization (GUS-β and XPNPEP1).
(DOC 42 kb)

Additional file 3: Table S3. Summary of the antibodies used for western-
blotting (wb) and immunohistochemistry (ihq) or immunofluorescence (if); rb:
rabbit polyclonal: m: mouse monoclonal; ip: immunoprecipitation for FACS
studies. (DOC 54 kb)

Additional file 4: Table S4. Expression levels of mRNAs encoding
nucleolar proteins 18S rRNA and 28S rRNA, and mRNAs encoding
ribosomal proteins in the substantia nigra. MA: middle-aged individuals
with no PD pathology, 1–6 stages of PD. (DOC 50 kb)

Additional file 5: Table S5. Expression levels of mRNAs encoding
nucleolar proteins 18S rRNA and 28S rRNA, and mRNAs encoding
ribosomal proteins in frontal cortex area 8. MA: middle-aged individuals
with no PD pathology, 1–6 stages of PD. (DOC 58 kb)

Additional file 6: Table S6. Expression levels of mRNAs encoding
nucleolar proteins 18S rRNA and 28S rRNA, and mRNAs encoding
ribosomal proteins in the angular gyrus. MA: middle-aged individuals
with no PD pathology, 1–6 stages of PD (DOC 58 kb)

Additional file 7: Table S7. Expression levels of mRNAs encoding
nucleolar proteins 18S rRNA and 28S rRNA, and mRNAs encoding ribosomal
proteins in the precuneus. MA: middle-aged individuals with no PD pathology,
1–6 stages of PD (DOC 58 kb)

Additional file 8: Table S8. Expression levels of mRNAs encoding
nucleolar proteins 18S rRNA and 28S rRNA, and mRNAs encoding ribosomal
proteins in the putamen. MA: middle-aged individuals with no PD pathology,
1–6 stages of PD (DOC 48 kb)

Additional file 9: Table S9. Mean ratio of the number of nucleolar
staining and the total number of neurons (ratio SD) visualized with
haematoxylin and eosin and immunohistochemistry to NPM1 and NPM3
in the substantia nigra at stages 1, 3, 4, and 5 of PD. Percentage (%) of
nucleolus staining and total neurons. No significant differences are seen
regarding the ratios of NPM3 nucleolar staining along disease
progression. However, NPM1 immunohistochemistry reveals a significant
decrease between PD1 and PD5 (P≤ 0.05 One-way Anova) (DOC 28 kb)

Additional file 10: Figure S1. Western blotting of isolated nuclei
obtained by FACS of frontal cortex area 8 of middle-aged (MA) and
Parkinson’s disease (PD) stage 5–6 cases subjected to over-exposure
(10 min). Several bands of α-synuclein oligomeric species are seen
in PD as in Figure 9B (exposure 1 min). In addition, weak bands
of α-synuclein oligomers are observed in isolated neuronal nuclei
(NeuN+) in MA. (TIF 426 kb)
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