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Abstract: Ca-P coatings on Ti implants have demonstrated good osseointegration capability due
to their similarity to bone mineral matter. Three databases (PubMed, Embase, and Web of Science)
were searched electronically in February 2021 for preclinical studies in unmodified experimental
animals, with at least four weeks of follow-up, measuring bone-to-implant contact (BIC). Although
107 studies were found in the initial search, only eight experimental preclinical studies were included.
Adverse events were selected by two independent investigators. The risk of bias assessment of the
selected studies was evaluated using the Cochrane Collaboration Tool. Finally, a meta-analysis of the
results found no statistical significance between implants coated with Ca-P and implants with etched
conventional surfaces (difference of means, random effects: 5.40; 99% CI: −5.85, 16.65). With the
limitations of the present review, Ca-P-coated Ti surfaces have similar osseointegration performance
to conventional etched surfaces. Future well-designed studies with large samples are required to
confirm our findings.

Keywords: titanium dental implant; calcium-phosphate coating; osseointegration

1. Introduction

Titanium (Ti) is one of the most widely used materials for the manufacture of dental
and orthopaedic implants due to its mechanical properties, chemical stability, and excellent
biocompatibility [1]. The quality of implants depends on the properties of their surfaces;
therefore, the modification of these surfaces, with the aim of achieving optimal osseointe-
gration and shortening waiting times for functional loading, has become an area of great
interest for researchers and is under constant evolution.

The osseointegration of implants has been defined as a direct and functional connec-
tion between the bone and the implant, where the macroscopic and microscopic character-
istics of the implant surface are of great importance. Lack of osseointegration is often due
to poor bone formation around the implant surface, leading to insufficient fixation of the
implant [2].

The deposition of calcium-phosphate (Ca-P) coatings on the implant surface has
received significant attention due to the chemical similarity to natural bone mineral. Ca-
P-based coatings show the ability to adhere directly to bone tissue and to increase the
biochemical anchorage between bone and the coating material [3]. Ca-P coatings on
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titanium implants have been shown to improve their biofunctionality by facilitating os-
seointegration and longevity, hence the existing philosophy regarding this type of coating
is that biological integration is improved when the structure mimics bone [4–6].

Ca-P, in the form of apatite, is the main mineral content (~69%) of natural bone [7].
However, it is not osteoinductive [8], and its activity is limited to osteoconduction, although
it has been shown that, in combination with growth factors and bioactive proteins, it can
be osteoinductive [9].

Ultrastructural observations have shown that Ca-P coatings partially dissolve, saturat-
ing body fluids in the peri-implant area and leading to a double precipitation of biological
apatite, which could serve as a substrate for bone-forming cells, the only difficulty being
matching the dissolution of the coating with the rate of healing to achieve ideal bone
apposition on the titanium surface [10].

Although previous reviews on this topic have been published, none of them compared
in vivo, Ca-P-coated Ti surfaces with conventional etched surfaces (sandblasted large grit
acid etched, SLA, surfaces). Therefore, the aim of the present systematic review and meta-
analysis was to bring together preclinical studies in experimental animals to determine
whether Ca-P-coated Ti implant surfaces possess increased osseointegration capability.

2. Materials and Methods

This systematic review and meta-analysis were conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [11].

2.1. Protocol and Registration

A search was carried out for any registered protocols on a similar topic in the Inter-
national Prospective Register of Systematic Reviews (PROSPERO). No systematic review
protocols were found in this database. Therefore, this review was pre-registered in the
PROSPERO platform under the identification number CRD-REGISTER-2-ID255185.

The Population, Intervention, Comparison, Outcome and Study Design framework
(PICOS) was used as a basis to formulate the research question, which was: “Do Ca-
P-coated Ti surfaces have a higher osseointegration capacity than etched Ti surfaces?”.
(P) Population: animals receiving endosseous Ti implants. (I) Intervention: Ti implants
with Ca-P incorporation. (C) Comparison: Ti implants with conventional surface. (O) Out-
come: bone formation around the implant surface. (S) Study design: preclinical studies in
unmodified experimental animals (Table 1).

Table 1. PICOS items.

Population (P) Unmodified animals (osteoporotic, diabetic . . . ) receiving endosseous
titanium implants.

Intervention (I) Ti implants with Ca-P incorporation.

Comparison (C) Ti implants with conventional etched surfaces (SLA type).

Outcomes (O) Bone formation around the implant surface (bone-to-implant contact, BIC).

Study design (S) Preclinical studies with at least six animals and 4 weeks follow-up.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria for the study selection were:

- Preclinical studies in unmodified animals (osteoporotic, diabetic . . . ), using en-
dosseous implants with Ca-P incorporation;

- Studies with at least six animals and 4 weeks of follow-up;
- Studies published in English.
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The exclusion criteria for the study selection were:

- In vitro studies;
- Narrative and systematic reviews;
- Clinical cases;
- Studies that did not meet the established inclusion criteria.

2.3. Search Strategy

The following search strategy was used: Two independent researchers conducted elec-
tronic searches in the PubMed, Embase, and Web of Science (WoS) databases up to February
2021 with the Medical Subject Headings (MeSH) terms: “Titanium implants”, “biocompati-
ble coated materials”, “osseointegration”, “calcium phosphate”, “animal model”. Boolean
operators “AND” and “OR” were used to refine the search (Table A1).

2.4. Selection of Studies

Two independent reviewers (N.L.-V., A.L.-V.) carried out the study selection by ob-
taining full text data from the selected articles, including general information, animal
parameters (total number, species), methods of Ca-P incorporation, timing of assessment,
methods of analysis, conclusions, and implant parameters (total number, length, diameter,
shape, location, and surface characteristics of implant and control). After eliminating
duplicates, studies were selected according to the inclusion criteria. Cohen’s kappa statistic
was calculated to measure the level of agreement between the two reviewers. Disagreement
on the eligibility of studies was resolved by discussion between the two reviewers.

2.5. Risk of Bias

The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk
of bias tool, an adapted version of the Cochrane RoB tool with specific biases in animal
studies), was used to assess the methodology of the scientific evidence in all selected
studies [12].

2.6. Quality of the Reports of the Selected Articles

Animal Research: Reporting of In Vivo Experiments (ARRIVE) [13] guidelines were
used, with a total of 23 items. Each item was scored by reviewers N.L.-V. and A.L.-V. with
scores of 0 (not reported) or 1 (reported), with an overall inventory of all included studies
(Table 1).

2.7. Statistical Analysis

Odds ratios (ORs) with 95% confidence intervals (CI) were used for adverse event
outcomes. The mean difference (MD) and standard deviation (SD) for BIC were used to
estimate effect size. The meta-analysis was performed using RevMan software (Review
Manager version 5.3; The Cochrane Collaboration, Copenhagen, Denmark). The random-
effects model was selected because of the expected methodological heterogeneity in the
included studies; furthermore, significant heterogeneity was interpreted when the I2 value
was > 50% [14]. The threshold for statistical significance was defined as p < 0.05. A funnel
plot was used to assess publication bias.

3. Results
3.1. Selection and Description of Studies

The initial electronic search yielded 107 references. After eliminating duplicates and
irrelevant articles based on their title and abstracts (in vitro studies, systematic reviews,
modified animals, non-Ti implants, and articles in other languages), 18 full texts were
selected [15–32]. The concordance between reviewers (N.L.-V., A.L.-V.) was 100% with
a Cohen’s kappa index of 1 (overall concordance). The reasons for rejecting 10 studies
out of the 18 selected were the following: use of unconventional implants [23,26,29,31],
comparing different apatite veneers [25,27,30], assessing parameters after occlusal load-



Materials 2021, 14, 3015 4 of 13

ing [28], assessing the antimicrobial activity of the Ca-P veneer [24], and not providing data
for meta-analysis [32]. Finally, eight studies were selected for the meta-analysis [15–22]
(Figure 1).

Materials 2021, 14, x FOR PEER REVIEW 4 of 14 
 

 

modified animals, non-Ti implants, and articles in other languages), 18 full texts were se-
lected [15–32]. The concordance between reviewers (N.L.-V., A.L.-V.) was 100% with a 
Cohen’s kappa index of 1 (overall concordance). The reasons for rejecting 10 studies out 
of the 18 selected were the following: use of unconventional implants [23,26,29,31], com-
paring different apatite veneers [25,27,30], assessing parameters after occlusal loading 
[28], assessing the antimicrobial activity of the Ca-P veneer [24], and not providing data 
for meta-analysis [32]. Finally, eight studies were selected for the meta-analysis [15–22] 
(Figure 1). 

 
Figure 1. Flowchart. 

Table 2 provides the assessment of the ARRIVE criteria in animal studies, with a 
mean score of 17.25 ± 0.46. All studies provided adequate information in terms of title, 
abstract, introduction, ethical statement, species, surgical procedure, outcome assessment, 
and statistical analysis. Items 5 (rationale for animal models), 19 (3Rs, replace, reduce and 
refine), 20 (adverse events), 21 (limitations of the study) and 22 (generalizability/applica-
bility) were not reported in any of the included studies. 

  

Figure 1. Flowchart.

Table 2 provides the assessment of the ARRIVE criteria in animal studies, with a mean
score of 17.25 ± 0.46. All studies provided adequate information in terms of title, abstract,
introduction, ethical statement, species, surgical procedure, outcome assessment, and sta-
tistical analysis. Items 5 (rationale for animal models), 19 (3Rs, replace, reduce and refine),
20 (adverse events), 21 (limitations of the study) and 22 (generalizability/applicability)
were not reported in any of the included studies.
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Table 2. Checklist of ARRIVE criteria reported by the included studies. Each item was judged as “0” (not reported) or “1” (reported). The total score of each of
included studies was also recorded.

Studies Koh et al.
2013 [15]

Fontana et al.
2011 [16]

Poulos et al.
2011 [17]

Quaranta
et al. 2010 [18]

Fügl et al.
2009 [19]

Le Guehennec
et al. 2008 [20]

Schliephake
et al. 2006 [21]

Caulier et al.
1997 [22]

1. Title 1 1 1 1 1 1 1 1
Abstract

2. Species 1 1 1 1 1 1 1 1
3. Key finding 1 1 1 1 1 1 1 1
Introduction

4. Background 1 1 1 1 1 1 1 1
5. Reasons for animal models 0 0 0 0 0 0 0 0

6. Objectives 1 1 1 1 1 1 1 1
Methods

7. Ethical statement 1 1 1 1 1 1 1 1
8. Study design 1 1 1 1 1 1 1 1

9. Experimental procedures 1 1 1 1 1 1 1 1
10. Experimental animals 1 1 1 1 1 1 1 1

11. Accommodation and handling of animals 0 1 1 0 1 0 0 0
12. Sample size 1 1 1 1 1 1 1 1

13. Assignment of animals to experimental
groups 1 1 1 1 1 1 1 1

14. Anesthesia 1 1 1 1 1 1 1 1
15. Statistical methods 1 1 1 1 1 1 1 1

Results
16. Experimental results 1 1 1 1 1 1 1 1

17. Results and estimation 1 1 1 1 1 1 1 1
Discussion

18. Interpretation and scientific implications 1 1 1 1 1 1 1 1
19. 3Rs reported 0 0 0 0 0 0 0 0

20. Adverse events 0 0 0 0 0 0 0 0
21. Study limitations 0 0 0 0 0 0 0 0

22. Generalization/applicability 0 0 0 0 0 0 1 0
23. Funding 1 0 1 1 0 1 1 1
Total score 17 17 18 17 17 17 18 17

Mode value: 17.25 ± 0.46.
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3.2. Risk of Bias Assessment

Although item 2 was mentioned in several studies, the lack of information resulted in
a high and unclear risk of bias for most of the included studies (Figure 2).
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3.3. Qualitative Synthesis

The most commonly used animal model was rabbit [15–17,20], and all included studies
evaluated BIC (Table 3); two of the included studies [17,21] evaluated bone density (BD)
and two bone area (BA) [15,18]. All implants used were commercial threaded implants and
only one of the studies used hydroxyapatite (HA) in combination with calcium oxide (CaO)
as a coating [15]. The methods of Ca-P incorporation to the surface of the experimental
implants were different in all selected studies (Table 4).

Table 3. Characteristics of the studies included.

Studies Animal
Model

Implants
(n)

Follow-Up
(Weeks) Analysis Methods Conclusions

Koh et al. 2013 [15] Rabbit model
(6) 12 2 and 4 Histomorphometry

BIC

A Ca-P coating on an anodized
surface may induce rapid

osseointegration at the
bone-implant interface and more

bone formation near the
implant surface.

Fontana et al. 2011 [16] Rabbit model
(36) 216 2, 4, and 9 Histomorphometry

BIC

The results using BIC values
suggest that the Ca-P coating had

no effect on improving
bone apposition.

Poulos et al. 2011 [17] Rabbit model
(20) 40 2 and 4 Histomorphometry

BIC

The porous titanium oxide implant
coated with calcium phosphate
behaved similarly to the porous

titanium oxide control.

Quaranta et al. 2010 [18] Rabbit model
(12) 48 3, 4, and 8 Histomorphometry

BIC
Ca-P coatings were osteoconductive
and promoted early bone response.
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Table 3. Cont.

Studies Animal
Model

Implants
(n)

Follow-Up
(Weeks) Analysis Methods Conclusions

Fügl et al. 2009 [19]
Non-human

primate
model (9)

25 80 Histomorphometry
BIC

Ca-P coating of implants enhances
osteoconductive properties in the

initial phase.

Le Guehennec et al. 2008
[20]

Rabbit model
(20) 40 2 and 8 Histomorphometry

BIC

Higher BIC for the titanium
implant coated with biomimetic

Ca-P as compared with the
grit-blasted implants.

The osseointegration of Ca-P-Ti was
similar to that observed for

implants with etched surfaces.

Schliephake et al. 2006
[21]

Foxhound
dog model

(10)
10 4 and 12 Histomorphometry

BIC

Coating an implant with Ca-P may
have a beneficial effect on

peri-implant bone regeneration and
could improve BIC in the early

stages of healing.

Caulier et al. 1997 [22] Goat model
(16) 64 16 Histomorphometry

BIC

No final conclusion can be drawn
due to the difference in surface

roughness between the coated and
noncoated implants.

Ca-P, calcium phosphate; BIC, bone-to-implant contact; Ti, titanium.

Table 4. Characteristics of implants.

Studies Implant Dimensions,
D(Ø) × L (mm)

Implant
Shape Ca-P Incorporation Surface Coating

Koh et al. 2013 [15] 3.5 Ø × 8 Screw Anodization Mixed HA and CaO
Fontana et al. 2011 [16] 3.75 Ø × 7 Screw Oxidation Ca-P

Poulos et al. 2011 [17] 3.75 Ø × 7 Screw Proprietary method
(Nobel Biocare®) Ca-P

Quaranta et al. 2010 [18] 4.5 Ø × 6 Screw Ion beam-assisted deposition Ca-P
Fügl et al. 2009 [19] 3 Ø × 10 Screw Magnetron-sputtered Ca-P

Le Guehennec et al. 2008 [20] 4.2 Ø × 6 Screw Blasting BCa-P
Schliephake et al. 2006 [21] 4 Ø × NR Screw Cathodic polarization Ca-P

Caulier et al. 1997 [22] 3.75 Ø × 10 Screw Plasma-spray Ca-P

HA, hydroxyapatite; CaO, calcium oxide; Ca-P, calcium phosphate; BCa-P, bicalcium phosphate; NR, not reported.

3.4. Quantitative Synthesis (Meta-Analysis)

The same studies included in the qualitative synthesis were used to perform a meta-
analysis comparing Ca-P-coated Ti implants with etched Ti implants, with a total of 455
implants being evaluated. A meta-analysis of adverse outcomes could not be performed
due to lack of data. All included studies [15–22] assessed BIC 4 weeks after placement.
Heterogeneity was very high (I2 = 99%) (Table 5)). Figure 3 shows the forest plot for the
meta-analysis.
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Table 5. Meta-analysis of BIC according to random-effects model.

Study or Subgroup
Exp. Ca-P Ti Sandblaster Mean Difference

Year
Mean SD Total Mean SD Total Weight IV, Random, 95% CI

Caulier et al. 67.4 27 64 26.5 16.2 64 12.2% 40.90 [33.19, 48.61] 1997
Schliephake et al. 45.2 9 10 31.5 10.8 10 12.0% 13.70 [4.99, 22.41] 2006

Le Guehennec et al. 47.3 3.9 40 68 3.9 40 12.9% −20.70 [−22.41, −18.99] 2008
Fügl et al. 74.9 0.98 25 73.2 17 25 12.4% 1.70 [−4.97, 8.37] 2009

Quaranta et al. 43 3 48 31.5 2.4 48 13.0% 11.50 [10.41, 12.59] 2010
Fontana et al. 31.37 17.79 216 27.68 14.66 216 12.9% 3.69 [0.62, 6.76] 2011
Poulos et al. 73.5 4.2 40 79.4 2.8 40 13.0% −5.90 [−7.46, −4.34] 2011

Koh et al. 53.7 10.9 12 53.6 15.8 12 11.6% 0.10 [−10.76, 10.96] 2013

Total (95% CI) 455 455 100.0% 5.40 [−5.85, 16.65]

Herogeneity: Tau2 = 253.60; Chi2 = 1166.29, df = 7 (P < 0.00001): I2 = 99%. Test for overall effect: Z = 0.94 (P = 0.35). SD, standard deviation;
CI, confidence interval.
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3.5. Publication Bias and Heterogeneity

The experimental studies show graphical signs of publication bias, as can be observed
in the funnel plot (Figure 4).
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4. Discussion

The purpose of the present study was to answer the following clinical question: “Do
Ca-P-coated Ti surfaces have a higher osseointegration capacity than etched Ti surfaces?”.
To quantify the potential effect of Ca-P-containing surfaces on peri-implant bone appo-
sition, a meta-analysis of BIC was performed. Our meta-analysis found no statistical
significance between implants coated with Ca-P and implants with conventional etched
surfaces (SLA type).

Certain thin Ca-P coatings have been shown to be amorphous and readily soluble in
simulated body fluids [33], and several studies have found no difference in early osseoin-
tegration between CA-P-coated implants and implants with etched or Ti powder-blasted
surfaces [34–36]. Koh and colleagues [15] in a study in rabbits concurred with these find-
ings, finding no difference in bone apposition around Ca-P-coated surfaces compared to
etched surfaces. Various forms of Ca-P differ in solubility and stability, which are charac-
teristics that alter their biocompatibility. HA is a very poorly soluble but very stable Ca
orthophosphate. Schliephake and colleagues [21] in a study in dogs compared the BIC of
Ca-P and HA-coated implants and uncoated implants, finding no significant differences
between the groups.

However, many studies have shown that Ca-P coatings improve the biocompatibil-
ity and fixation of implants; for example, Vercaigne and colleagues reported that Ca-P
coatings are much more effective in stimulating the bone reaction than microroughness
of surfaces [37], emphasizing that, in addition to the implant surface conditions, the bone
reaction to an oral implant is determined by the local conditions at the implantation site,
i.e., the presence of cortical or trabecular bone [38]. However, not all types of coatings
achieve the same results. The coating technique is another important factor that can alter
the solubility and stability of the coating [39]. Micro-coatings appear to improve fixation
in the first few weeks by increasing the bone-to-implant contact surface [40], although
these types of coatings tend to crack easily, detaching the coating and leading to implant
failure [41,42]. Despite this, each technique has different advantages and disadvantages in
terms of processing and outcome. However, coarse-grained coatings are the most prone
to fracture of the bone-coating-metal substrate interface long after implantation, which
has led to this type of implant falling into disuse in clinical practice. A study by Coelho
and colleagues [43] compared the biological response of Ti alloy (Ti-6Al-4V) cylinders with
Ca-P deposition cylinders in a dog model, determining the BIC using a computer program,
and found no significant differences between the two surfaces compared in the first weeks
of implantation.

Research seeks to improve the biomechanics of bone tissue by designing implants
with improved biocompatibility, osteoconductivity and osteoinductivity, leading to faster
and improved bone healing and turnover [44,45].

After implantation, the implant surfaces come into contact with biological fluids and
tissues, and there are two types of host response: either forming an intermediate fibrous
layer that does not guarantee adequate biomechanical fixation or direct bone-to-implant
contact, ensuring osseointegration [4]. However, the actual process of osseointegration
remains an unknown and little-studied mechanism, with genetics being identified as one
of the inherent variables in the patient [46].

Numerous studies have shown that early fixation and long-term mechanical stability
of fixtures are improved with rough profiles compared to smooth surfaces [47,48]; however,
rough surfaces are more prone to generating pathologies around the implant tissues (peri-
implantitis), and this would work against Ca-P-coated surfaces [49].

After implantation of Ca-P-coated fixtures, a layer of biological apatite is released on
the implant surface that could serve as a matrix for adhesion and growth of osteogenic
cells [50].

The studies included in our meta-analysis used different coating processes: oxida-
tion [15,16], micro-coating (particle deposition) [18–21], and blasting (plasma spray) [20].
The study by Poulos and colleagues [17] used a proprietary coating method not described
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in the study; however, it has been described that the plasma spray technique is not very
effective for coating dental implants with complex topographies [51], making it very diffi-
cult at this time to present a detailed discussion on the commercialization of Ca-P coatings,
films, and layers on commercial Ti implants [52]. However, mechanical conditions are
not the only requirement for promoting bone response. Implants with a thin Ca-P coat-
ing resulted in the highest amount of bone contact, but it is difficult to give a definitive
explanation for the coating effect of Ca-P ceramics [36].

Finally, it should be added that we encountered some serious limitations related to
this meta-analysis: firstly, the small number of studies included and therefore the limited
number of implants studied; second, the high risk of bias of all studies; third, the substantial
heterogeneity of the selected studies. This did not allow any solid conclusions to be drawn.

5. Conclusions

Within the aforementioned limitations, it can be concluded that Ca-P-coated Ti surfaces
have a similar osseointegration power to conventional etched surfaces (SLA or similar).
However, in order to confirm our results, well-structured, well-conducted studies with
larger samples and longer follow-ups are necessary.

Author Contributions: Study concept and design, N.L.-V and A.L.-V.; data collection (literature
search and study selection), N.L.-V., J.M.A. and J.M.R.; data analysis and interpretation (literature),
B.M.d.S. and J.M.R.; drafting of the manuscript, N.L.-V.; A.L.-V. and B.M.d.S.; critical revision of the
manuscript for important intellectual content, A.L.-V., M.J.R. and J.M.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BA Bone area
BCa-P Bicalcium phosphate
BD Bone density
BIC Bone-to-implant contact
Ca-P Calcium phosphate
CAO Calcium oxide
HA Hydroxyapatite
MeSH Medical Subject Headings
SLA Sandblasted large grit acid etched



Materials 2021, 14, 3015 11 of 13

Appendix A

Table A1. PRISMA Checklist.

Section/Topic # Checklist Item Reported
on Page #

TITLE

Title 1 Identify the report as a systematic review, meta-analysis, or both. 1

ABSTRACT

Structured summary 2

Provide a structured summary including, as applicable: background; objectives;
data sources; study eligibility criteria, participants, and interventions; study

appraisal and synthesis methods; results; limitations; conclusions and implications
of key findings; systematic review registration number.

1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of what is already known. 2

METHODS

Objectives 4 Provide an explicit statement of questions being addressed with reference to
participants, interventions, comparisons, outcomes, and study design (PICOS). 2

Protocol and registration 5
Indicate if a review protocol exists, if and where it can be accessed (e.g., Web

address), and, if available, provide registration information including registration
number.

2

Eligibility criteria 6
Specify study characteristics (e.g., PICOS, length of follow-up) and report

characteristics (e.g., years considered, language, publication status) used as criteria
for eligibility, giving rationale.

2

Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with
study authors to identify additional studies) in the search and date last searched. 2

Search 8 Present full electronic search strategy for at least one database, including any limits
used, such that it could be repeated. 2

Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in
systematic review, and, if applicable, included in the meta-analysis). 8

Data collection process 10
Describe method of data extraction from reports (e.g., piloted forms, independently,

in duplicate) and any processes for obtaining and confirming data from
investigators.

3

Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding
sources) and any assumptions and simplifications made. 2

Risk of bias in
individual studies 12

Describe methods used for assessing risk of bias of individual studies (including
specification of whether this was done at the study or outcome level), and how this

information is to be used in any data synthesis.
6

Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). 3

Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done,
including measures of consistency (e.g., I2) for each meta-analysis. 7,8
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