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Abstract: Purpose: To analyze the influence of the pecking motion frequency on the cyclic fatigue
resistance of endodontic rotary files. Material and Methods: Sixty PlexV 25.06 endodontic rotary files
were selected and distributed into three groups: 30 movements/min (n = 20), 60 movements/min
(n = 20), and 120 movements/min (n = 20). A dynamic cyclic fatigue device was designed using
Computer Aided Design/ Computer Aided Engineering (CAD/CAE) technology and manufactured
by 3D impressions to simulate the pecking motion performed by an operator. Failures of the
endodontic rotary files were detected by a Light-Emitting Diode (LED)/Light-Dependent Resistor
(LDR) system controlled by an Arduino-Driver complex and management software. Endodontic
rotary files were tested on an artificial root canal manufactured by wire electrical discharge machining
(EDM), with similar dimensions to those of the instrument under examination. Endodontic rotary files
were used following the manufacturer’s recommendations. The results were analyzed by ANOVA
and Weibull statistics. Results: All pairwise comparisons revealed statistically significant differences
in all three variables, except for the difference in the number of cycles between the groups with 60
and 120 movements/min (p = 0.298). The scale distribution parameter of Weibull statistics showed
statistically significant differences in all three variables, except for the differences in the number
of cycles between groups with 30 and 60 movements/min (p = 0.0722). No statistically significant
differences in the three variables were observed for the shape distribution parameter. Conclusion:
A low frequency of pecking motion is recommended to reduce the risk of failure of endodontic rotary
files associated with cyclic fatigue.
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1. Introduction

Endodontic rotary files have experienced continuous development since nickel–titanium (NiTi)
files were introduced in the 1980s [1]. This alloy increases the flexibility and strength of rotary files
compared with stainless-steel instruments [2], and it simplifies the endodontic procedure by improving
the speed, accuracy, and safety of root canal shaping [3]. Despite continuous enhancements in the
design and manufacture of NiTi rotary files to reduce the occurrence of failure during root canal
shaping [4], failures can still occur. Many variables can contribute to file separation, but the main
causes are cyclic bending fatigue and torsional overload [5–8]. Torsional overload is caused by the
blockage of the endodontic files during rotational movement [9]. However, NiTi instrument failures
are primarily caused by cyclic fatigue, which occurs when a NiTi endodontic instrument rotates in
a curved root canal [10]. During rotation, the structure of the endodontic instrument is alternately
subjected to compressive and tensile stress cycles, which produce microstructural changes that lead to
the failure of the endodontic rotary file [11]. Root canal shape, instrument geometry, rotational speed,
torque, instrument surface treatments, sterilization cycles, the number of clinical uses, and the chemical
composition of NiTi alloys are the main factors that affect the number of cycles to failure (NCF) of NiTi
rotary instruments [12,13]. However, the influence of the pecking motion (frequency of in-and-out
movement) on the cyclic fatigue resistance of endodontic rotary instruments has never been tested.
In 2002, the American National Standard Institute and the American Dental Association standardized a
protocol for testing the torsional and flexibility resistance of stainless-steel manual files [14], which was
also addressed in the 3630-1 norm by the International Organization for Standardization (ISO) [15] for
endodontic instruments with a taper of 2%. However, there is no international standard for testing the
cyclic fatigue behavior of NiTi endodontic rotary instruments [11], and several self-designed devices
and methods have been used [11]. However, none of these custom-made devices have been capable of
dynamically testing the cyclic fatigue of NiTi endodontic rotary instruments in vitro with an automatic
detection system and an anatomically based artificial root canal.

The aim of this work was to analyze the influence of the pecking motion on the cyclic fatigue
resistance of endodontic rotary instruments; the null hypothesis (H0) asserts that the frequency of the
pecking motion does not significantly affect the time to failure, the NCF, or the cyclic fatigue resistance
of endodontic rotary instruments.

2. Materials and Methods

2.1. Study Design

Sixty sterile NiTi CM Wire endodontic rotary instruments 25.06 (Plex V2®, Orodeka, Italia) were
involved in this study. Before the experiment, every endodontic rotary instrument was inspected
for defects or deformities under a stereomicroscope (SZR-10, Optika, Bergamo, Italy), and none
were discarded. A randomized controlled experimental trial was performed at the Dental Centre of
Innovation and Advanced Specialties at the Alfonso X el Sabio University (Madrid, Spain) between
February and July 2019. The endodontic rotary instruments were randomized (Epidat 4.1, Galicia,
Spain) and distributed into the three groups: (A) 30 pecking movements/min (n = 20), (B) 60 pecking
movements/min (n = 20), and (C) 120 pecking movements/min (n = 20).

2.2. The Experimental Cyclic Fatigue Model

The cyclic fatigue tests were performed using a custom-made device (Utility Model Patent number
ES1219520) that provides information about the behavior of an endodontic rotary file during a root canal
treatment. The endodontic rotary instruments were neither used nor submitted to sterilization cycles
before the tests. The structure was designed by 2D/3D Computer-Aided Design/Computer-Aided
Engineering (CAD/CAE) (Midas FX+®, Brunleys, MK, UK) and manufactured by 3D impression
(ProJet® 6000. 3D Systems©, Rock Hill, SC, USA) (Figure 1).
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The direction and speed of the movement were produced by the brushed DC gearmotor (Ref.: 
1589, Pololu® Corporation, Las Vegas, NV, USA) controlled by the driver (Ref.: DRV8835, Pololu® 
Corporation, Las Vegas, NV, USA), which performed an H-bridge function that controlled the speed 
movement through Pulse Width Modulation (PWM) signals emitted by four switches modulated by 
transistors. The movement was transferred to the artificial root canal support through a roller bearing 
system (Ref.: MR104ZZ, FAG, Schaeffler Herzogenaurach, Germany). The artificial root canal support 
moved in a pure axial motion through a lineal guide (Ref.: HGH35C 10249-1 001 MA, HIWIN 

Technologies Corp., Taichung, Taiwan). The endodontic rotary file selected (Plex V2®, Orodeka) was 
digitized using a micro Computer Tomography (Skyscan 1176, Bruker-MicroCT, Kontich, Belgium) 
to obtain a stereolithography (STL) file (Figure 2A) that was needed to design an accurate artificial 
root canal regarding the measurements of the endodontic rotary file tested (Figure 2B). The artificial 
root canal piece was manufactured with stainless steel with a 1 mm width. The artificial root canal 
form was anatomically based and designed using 2D/3D CAD/CAE software (Midas FX+®, Brunleys), 
and it was manufactured by electrical discharge machining (EDM) molybdenum wire-cut technology 
(Cocchiola S.A., Buenos Aires, Argentina) (Figure 2C) to simulate the tested endodontic rotary 
instrument’s apical size, taper, and length and enable intimate contact between the endodontic rotary 
file and the artificial root canal, with a 60° curvature according to Schneider’s measure technique [16] 
and a 3 mm radius of curvature (Figure 2D). 

Figure 1. Parts of the hardware of the cyclic fatigue test device.

The endodontic handpiece (X-Smart Plus, Dentsply Maillefer, Baillagues, Switzerland) was
scanned (3D Geomagic Capture Wrap, 3D Systems©, Rock Hill, SC, USA) to create an accurate design
for its support piece by means of inverse engineering technology (Midas FX+®, Brunleys) and 3D
impression manufacture (ProJet® 6000. 3D Systems©, Rock Hill, SC, USA). This support was firmly
attached to the main structure and enabled the angular displacement of the endodontic handpiece
by means of a spindle to test different file lengths. The support also allowed the files to be removed
during the cyclic fatigue tests.

The direction and speed of the movement were produced by the brushed DC gearmotor (Ref.:
1589, Pololu® Corporation, Las Vegas, NV, USA) controlled by the driver (Ref.: DRV8835, Pololu®

Corporation, Las Vegas, NV, USA), which performed an H-bridge function that controlled the speed
movement through Pulse Width Modulation (PWM) signals emitted by four switches modulated
by transistors. The movement was transferred to the artificial root canal support through a roller
bearing system (Ref.: MR104ZZ, FAG, Schaeffler Herzogenaurach, Germany). The artificial root canal
support moved in a pure axial motion through a lineal guide (Ref.: HGH35C 10249-1 001 MA, HIWIN
Technologies Corp., Taichung, Taiwan). The endodontic rotary file selected (Plex V2®, Orodeka) was
digitized using a micro Computer Tomography (Skyscan 1176, Bruker-MicroCT, Kontich, Belgium) to
obtain a stereolithography (STL) file (Figure 2A) that was needed to design an accurate artificial root
canal regarding the measurements of the endodontic rotary file tested (Figure 2B). The artificial root
canal piece was manufactured with stainless steel with a 1 mm width. The artificial root canal form was
anatomically based and designed using 2D/3D CAD/CAE software (Midas FX+®, Brunleys), and it was
manufactured by electrical discharge machining (EDM) molybdenum wire-cut technology (Cocchiola
S.A., Buenos Aires, Argentina) (Figure 2C) to simulate the tested endodontic rotary instrument’s apical
size, taper, and length and enable intimate contact between the endodontic rotary file and the artificial
root canal, with a 60◦ curvature according to Schneider’s measure technique [16] and a 3 mm radius of
curvature (Figure 2D).



J. Clin. Med. 2020, 9, 45 4 of 13J. Clin. Med. 2020, 9, x FOR PEER REVIEW 4 of 13 

 

 

Figure 2. (A) Stereolithography (STL) file of the endodontic rotary file; (B) STL file of the artificial root 
canal; (C) artificial root canal manufactured by electrical discharge machining (EDM) and (D) 
endodontic rotary file in intimate contact with the artificial root canal (D). 

The failure of the endodontic rotary instrument (Figure 2B) was detected through a Light-
Dependent Resistor (LDR) sensor (Ref.: C000025, Arduino LLC®, Ivrea, Italy) located at the apex of 
the artificial root canal. The LDR sensor quantifies the continuous light source emitted by a high-
brightness white Light-Emitting Diode (LED) (20000 mcd) (Ref.: 12.675/5/b/c/20k, Batuled, Coslada, 
Spain), which is opposite to the artificial root canal (Figure 1). The LDR (Ref.: C000025, Arduino LLC®) 
sensor data were conditioned by a processor (Arduino UNO Rev. 3, Arduino LLC®, Ivrea, Italy) 
(Figure 1) to detect values from 0 (endodontic rotary instrument inside the artificial root canal) to 
1024 (endodontic rotary instrument outside the artificial root canal). The time to failure was 
determined when the LDR (Ref.: C000025, Arduino LLC®) sensor detected no variations in light 
values for 50 ms. The hardware was managed by software that receives input signals from the 
Arduino board (Figure 3A–C). The signals were detected by the LDR (Ref.: C000025, Arduino LLC®) 
sensor with a frequency of 50 ms to accurately detect the time of failure.  

Figure 2. (A) Stereolithography (STL) file of the endodontic rotary file; (B) STL file of the artificial root
canal; (C) artificial root canal manufactured by electrical discharge machining (EDM) and (D) endodontic
rotary file in intimate contact with the artificial root canal (D).

The failure of the endodontic rotary instrument (Figure 2B) was detected through a Light-
Dependent Resistor (LDR) sensor (Ref.: C000025, Arduino LLC®, Ivrea, Italy) located at the apex of the
artificial root canal. The LDR sensor quantifies the continuous light source emitted by a high-brightness
white Light-Emitting Diode (LED) (20000 mcd) (Ref.: 12.675/5/b/c/20k, Batuled, Coslada, Spain),
which is opposite to the artificial root canal (Figure 1). The LDR (Ref.: C000025, Arduino LLC®)
sensor data were conditioned by a processor (Arduino UNO Rev. 3, Arduino LLC®, Ivrea, Italy)
(Figure 1) to detect values from 0 (endodontic rotary instrument inside the artificial root canal) to 1024
(endodontic rotary instrument outside the artificial root canal). The time to failure was determined
when the LDR (Ref.: C000025, Arduino LLC®) sensor detected no variations in light values for
50 ms. The hardware was managed by software that receives input signals from the Arduino board
(Figure 3A–C). The signals were detected by the LDR (Ref.: C000025, Arduino LLC®) sensor with a
frequency of 50 ms to accurately detect the time of failure.

Once the LDR (Ref.: C000025, Arduino LLC®) sensor detects the failure of the endodontic
rotary instrument, the brushed DC gearmotor stops immediately, and the time to failure and the test
parameters are saved by the management software. In addition, the manager application sends output
data that start each cyclic fatigue test and control the speed of the pecking motion of the artificial root
canal. The speed of the movement and the LDR (Ref.: C000025, Arduino LLC®) sensor values were
also shown in real time on a Liquid Crystal Display (LCD) (Ref.: LCD-09568, Spark Fun Electronics,
Niwot, CO, USA) placed on the structure of the device (Figure 1).
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parameters (C).

The endodontic rotary instruments were operated by a 6:1 reduction handpiece (X-Smart Plus,
Dentsply Maillefer) and a torque-controlled motor with continuous rotation at 400 rpm and 3.5 N/cm
torque according to the manufacturer’s instructions. The friction between the file and the artificial
canal walls was reduced by applying special high-flow synthetic oil designed for the lubrication of
mechanical parts (Singer All-Purpose Oil; Singer Sewing Company, Barcelona, Spain).

All endodontic rotary instruments were rotated until fracture occurred. The number of cycles
to fracture (NCF) for each instrument was calculated by using the following formula: NCF = time
(seconds) to failure × rotational speed (rpm)/60 seconds [17]. The time to failure, the NCF, the number
of in-and-out movements, and the length of the fracture file tip were also measured and recorded.
Fractographic analysis of the failure was performed under a scanning electron microscope (ZEISS Supra
35VP; Oberkochen, GmBH, Germany) to examine topographic features of the fractured endodontic
rotary files.

2.3. Statistical Tests

Statistical analysis of all variables was carried out using SAS 9.4 (SAS Institute Inc., Cary, NC,
USA). Descriptive statistics are expressed as means and standard deviations (SD) for quantitative
variables and as absolute numbers and percentages for qualitative variables. Comparative analysis
was performed by comparing the time to failure, the NCF, and the number of pecking movements
(cycles of in-and-out movements) using ANOVA. In addition, Weibull characteristic strength (σ0) and
Weibull modulus (m) were calculated. The statistical significance was set at p < 0.05.

3. Results

The means and SD values for the time to failure (seconds), the NCF, and the number of cycles of
in-and-out movement in the study groups are displayed in Tables 1–3, respectively.

Table 1. Descriptive statistics of the time to failure.

n Mean SD Minimum Maximum Fracture Length (mm)

30 MOV/MIN 20 423.66 a 84.61 216.23 544.40 3.23
60 MOV/MIN 20 234.23 b 60.56 127.00 378.21 3.04

120 MOV/MIN 20 163.06 c 45.95 81.80 241.16 3.81

SD, standard deviations; a, b, c, different superscript means statistically significant differences between groups
(p < 0.05).
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Table 2. Descriptive statistics of the NCF.

n Mean SD Minimum Maximum Fracture Length (mm)

30 MOV/MIN 20 2824.37 a 564.05 1441.55 3629.35 3.23
60 MOV/MIN 20 1560.55 b 401.23 846.69 2501.41 3.04

120 MOV/MIN 20 1087.06 c 306.34 545.33 1607.73 3.81

NCF, the number of cycles to failure; a, b, c, different superscript means statistically significant differences between
groups (p < 0.05).

Table 3. Descriptive statistics of the number of cycles of in-and-out movement.

n Mean SD Minimum Maximum Fracture Length (mm)

30 MOV/MIN 20 211.60 a 42.66 108.12 272.20 3.23
60 MOV/MIN 20 234.23 b 60.56 127.00 378.21 3.04

120 MOV/MIN 20 326.12 b 91.90 163.59 482.32 3.81
a, b, different superscript means statistically significant differences between groups (p < 0.05).

The ANOVA revealed statistically significant differences in all three variables. The differences
revealed by pairwise comparisons were all statistically significant, except for the difference in the
number of cycles between the groups with 60 and 120 movements/min (p = 0.298). The scale distribution
parameter (η) of Weibull statistics showed statistically significant differences in all three variables,
except for the difference in the number of cycles between the groups with 30 and 60 movements/min
(p = 0.0722) (Tables 4–6).

Table 4. Weibull statistics of the time to failure.

m =Weibull Shape (β) σ0 =Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

30 MOV/MIN 6.3802 1.1533 4.4768 9.0927 455.9851 16.7468 424.3155 490.0185
60 MOV/MIN 4.2152 0.6990 3.0456 5.8341 257.1689 14.4489 230.3531 287.1065
120 MOV/MIN 4.4090 0.8177 3.0653 6.3417 179.5190 9.5319 161.7759 199.2080

Table 5. Weibull statistics of the NCF.

m =Weibull Shape (β) σ0 =Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

30 MOV/MIN 6.3802 1.1533 4.4768 9.0927 3039.9005 111.6454 2828.7697 3266.7895
60 MOV/MIN 4.2540 0.7079 3.0702 5.8944 1712.7561 95.3373 1535.7306 1910.1877
120MOV/MIN 4.4090 0.8177 3.0653 6.3417 1196.7927 63.5463 1078.5059 1328.0528

Table 6. Weibull statistics of the number of cycles of in-and-out movement.

m =Weibull Shape (β) σ0 =Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

30 MOV/MIN 6.3342 1.1474 4.4412 9.0341 227.8707 8.4275 211.9375 245.0018
60 MOV/MIN 4.2152 0.6990 3.0456 5.8341 257.1689 14.4489 230.3531 287.1065
120 MOV/MIN 4.4090 0.8177 3.0653 6.3416 359.0376 19.0640 323.5513 398.4160

However, the shape distribution parameter (β) showed no statistically significant differences
in the time to failure between the groups with 30 and 60 movements/min (p = 0.0911), 30 and
120 movements/min (p = 0.1537), and 60 and 120 movements/min (p = 0.8568) (Figures 4 and 5).

There were no statistically significant differences in the β value of the NCF between the groups
with 30 and 60 movements/min (p = 0.0990), 30 and 120 movements/min (p = 0.1537), and 60 and
120 movements/min (p = 0.8858) (Figures 6 and 7).
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There were no statistically significant differences in the β value of the number of cycles of
in-and-out movement between the groups with 30 and 60 movements/min (p = 0.0990), 30 and
120 movements/min (p = 0.1537), and 60 and 120 movements/min (p = 0.8858) (Figures 8 and 9).

The lifespan of the endodontic rotary files submitted to 30 movements/min was higher
(430.53 ± 77.71 s than that of instruments submitted to 60 movements/min (235.75 ± 62.55 s) and
120 movements/min (165.20 ± 42.03 s). The mean lengths of the fractured fragments were not
statistically significantly different for any of the instruments tested (p > 0.05).
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4. Discussion

The results obtained in the present study lead to the rejection of the null hypothesis (H0),
which states that the frequency of pecking motion has no statistically significant effect on the cyclic
fatigue resistance of endodontic rotary instruments.

Different causes of fractures of endodontic instruments have been proposed by many authors
and include operator experience [18,19], rotational speed [20,21], the number of uses [22], the number
of rotations [23], pre-flaring [24], glide path [25], the angle and radius of the curvature [20,26],
and the sterilization of instruments [27]. However, the influence of the frequency of pecking motion
performed by the operator on the cyclic fatigue resistance of endodontic rotary instruments has not yet
been analyzed.

Cyclic fatigue resistance has been experimentally analyzed by using several custom-made devices;
however none of them have been capable of testing the cyclic fatigue resistance of NiTi endodontic
rotary instruments using an anatomically based artificial root canal that allows intimate contact between
the artificial root canal and the endodontic rotary instrument along the file, which might alter the cyclic
fatigue resistance of the endodontic rotary instruments and hence the results of the experiment [11].
The dynamic motion produced by a cyclic fatigue test device can be made comparable to the pecking
motion performed by the operator during a root canal treatment. The automatic detection system is
able to objectively and accurately identify failures of endodontic rotary files.

Dederich and Zakariasen (1986) were first to develop a dynamic testing device, which allowed the
endodontic rotary instruments to realize displacement in a pure axial movement [28]. Ray et al. (2007)
also performed dynamic cyclic fatigue studies with standardized axial movement, and they concluded
that the pecking motion increased the lifespan of the endodontic rotary instruments submitted to
cyclic fatigue compared with the results obtained from static cyclic fatigue studies [29]. Hülsmann
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et al. (2019) reported similar findings to ours and highlighted the differences between static and
dynamic cyclic fatigue tests [30]. Nevertheless, only 12% of published cyclic fatigue studies have
used a dynamic fatigue device [30]. Most studies that have compared static and dynamic cyclic
fatigue studies have concluded that the time to fracture of endodontic rotary instruments submitted to
dynamic cyclic fatigue studies was approximately 20–40% higher than that found in static cyclic fatigue
studies [26,31–35]. Previous dynamic cyclic fatigue devices have been unable to accurately identify
the causes of endodontic rotary instrument failures because of the absence of standardization of the
axial direction of the pecking motion. Lateral movements during the pecking motion of an endodontic
rotary instrument can lead to a second bending point at the beginning of the artificial root canal, thus
distorting the outcome of cyclic fatigue tests. In addition, Plotino et al. (2010) reported the influence
of the shape of the artificial root canal on the contact between the endodontic rotary instrument and
the artificial root canal. They concluded that artificial root canals must be designed with a focus on
the shape of the endodontic rotary file being studied [36]. However, the above-described artificial
root canals had a cylindrically shaped circular section that did not allow intimate contact with the
endodontic rotary instrument. In an attempt to simulate real clinical conditions, the present study
involved an artificial root canal that was designed by using the measurements of the endodontic rotary
instrument being studied.

The higher β values observed for the group with 30 movements/min for all three variables reveal
more predictable behavior of the failure of the endodontic rotary instruments in this study group,
and the lower η values found in the groups with 60 and 120 movements/min for all three variables
indicate a lower cyclic fatigue resistance of the endodontic rotary instruments in these study groups.
The location of the crystal structure transformation is changed in the endodontic rotary instrument
during the pecking motion, which increases the cyclic fatigue resistance [30].

The conclusion derived from this study is that a high frequency of pecking motion decreases the
cyclic fatigue resistance of endodontic rotary files.

Nevertheless, further research is needed to determine the influence of the frequency of pecking
motion and working time on the cyclic fatigue resistance of endodontic rotary files.

5. Conclusions

In conclusion, within the limitations of this study, our results show that a high frequency of pecking
motion decreases the cyclic fatigue resistance of endodontic rotary instruments. A low frequency
of pecking motion is recommended to reduce the risk of fractures of endodontic rotary instruments
associated with cyclic fatigue.
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